Multiobjective Evolutionary Topology Optimization Algorithm Using Quadtree Encoding

被引:1
作者
Nimura, Naruhiko [1 ]
Oyama, Akira [2 ]
机构
[1] Univ Tokyo, Dept Aeronaut & Astronaut, Hongo, Tokyo 1138654, Japan
[2] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan
来源
IEEE ACCESS | 2024年 / 12卷
基金
日本科学技术振兴机构;
关键词
Optimization; Automotive components; Topology; Aerodynamics; Design optimization; Image coding; Pareto optimization; Genetic programming; Multiobjective optimization; topology optimization; design optimization; quadtree; genetic programming;
D O I
10.1109/ACCESS.2024.3404594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A multiobjective high-degree-of-freedom design optimization algorithm that enables topological changes in design is proposed for multiobjective aerodynamic design optimization. In this method, a design is encoded using a regional quadtree, which is often used in computer graphics to increase the speed and save memory in image processing. The optimization problem is solved using multiobjective genetic programming with new crossover, mutation, regularization, and decoding operators designed to handle the evolution of the quadtree structure efficiently and properly. The proposed algorithm is evaluated by solving two multiobjective airfoil shape reproduction problems. The results show that the proposed method can represent typical airfoil shapes with different topologies more efficiently than the conventional evolutionary algorithm.
引用
收藏
页码:73839 / 73848
页数:10
相关论文
共 50 条
  • [41] Multiobjective Evolutionary Optimization Algorithm for Cognitive Radio Networks
    Qin, Hang
    Su, Jun
    Du, Youfu
    IEEC 2009: FIRST INTERNATIONAL SYMPOSIUM ON INFORMATION ENGINEERING AND ELECTRONIC COMMERCE, PROCEEDINGS, 2009, : 164 - 168
  • [42] Topology and Sizing Optimization of Trusses with Adaptive Ground Finite Elements Using Multiobjective PBIL
    Noilublao, Chaid
    Bureerat, Sujin
    ADVANCED DESIGN TECHNOLOGY, PTS 1-3, 2011, 308-310 : 1116 - 1121
  • [43] Multiarea Optimal Power Flow using Multiobjective Evolutionary algorithm
    Amorim, E. A.
    Lima, F. G. M.
    Romero, R.
    Mantovani, J. R. S.
    2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 4543 - 4550
  • [44] Evolutionary Black-Box Topology Optimization: Challenges and Promises
    Guirguis, David
    Aulig, Nikola
    Picelli, Renato
    Zhu, Bo
    Zhou, Yuqing
    Vicente, William
    Iorio, Francesco
    Olhofer, Markus
    Matusiks, Wojciech
    Coello Coello, Carlos Artemio
    Saitou, Kazuhiro
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (04) : 613 - 633
  • [45] Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems
    Wang, Yong
    Cai, Zixing
    Guo, Guanqi
    Zhou, Yuren
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (03): : 560 - 575
  • [46] Supplier Selection Using Multiobjective Evolutionary Algorithm
    Rankovic, Vladimir
    Arsovski, Zora
    Arsovski, Slavko
    Kalinic, Zoran
    Milanovic, Igor
    Rejman-Petrovic, Dragana
    VIRTUAL AND NETWORKED ORGANIZATIONS, EMERGENT TECHNOLOGIES, AND TOOLS, 2012, 248 : 327 - +
  • [47] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    Journal of Heuristics, 2000, 6 : 347 - 360
  • [48] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360
  • [49] Indicator-Based Evolutionary Algorithm for Solving Constrained Multiobjective Optimization Problems
    Yuan, Jiawei
    Liu, Hai-Lin
    Ong, Yew-Soon
    He, Zhaoshui
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 379 - 391
  • [50] The topology optimization using evolutionary algorithms
    Kokot, G
    Orantek, P
    IUTAM SYMPOSIUM ON EVOLUTIONARY METHODS IN MECHANICS, 2004, 117 : 173 - 186