Multiobjective Evolutionary Topology Optimization Algorithm Using Quadtree Encoding

被引:1
|
作者
Nimura, Naruhiko [1 ]
Oyama, Akira [2 ]
机构
[1] Univ Tokyo, Dept Aeronaut & Astronaut, Hongo, Tokyo 1138654, Japan
[2] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan
来源
IEEE ACCESS | 2024年 / 12卷
基金
日本科学技术振兴机构;
关键词
Optimization; Automotive components; Topology; Aerodynamics; Design optimization; Image coding; Pareto optimization; Genetic programming; Multiobjective optimization; topology optimization; design optimization; quadtree; genetic programming;
D O I
10.1109/ACCESS.2024.3404594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A multiobjective high-degree-of-freedom design optimization algorithm that enables topological changes in design is proposed for multiobjective aerodynamic design optimization. In this method, a design is encoded using a regional quadtree, which is often used in computer graphics to increase the speed and save memory in image processing. The optimization problem is solved using multiobjective genetic programming with new crossover, mutation, regularization, and decoding operators designed to handle the evolution of the quadtree structure efficiently and properly. The proposed algorithm is evaluated by solving two multiobjective airfoil shape reproduction problems. The results show that the proposed method can represent typical airfoil shapes with different topologies more efficiently than the conventional evolutionary algorithm.
引用
收藏
页码:73839 / 73848
页数:10
相关论文
共 50 条
  • [31] Cooperative Multiobjective Evolutionary Algorithm With Propulsive Population for Constrained Multiobjective Optimization
    Wang, Jiahai
    Li, Yanyue
    Zhang, Qingfu
    Zhang, Zizhen
    Gao, Shangce
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (06): : 3476 - 3491
  • [32] Cooperative Multiobjective Evolutionary Algorithm With Propulsive Population for Constrained Multiobjective Optimization
    Wang, Jiahai
    Li, Yanyue
    Zhang, Qingfu
    Zhang, Zizhen
    Gao, Shangce
    IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (06) : 3476 - 3491
  • [33] A new multiobjective evolutionary optimization algorithm based on θ-multiobjective clonal selection
    Zareizadeh, Zahra
    Helfroush, Mohammad Sadegh
    Kazemi, Kamran
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (03) : 1685 - 1696
  • [34] A multiobjective optimization-based evolutionary algorithm for constrained optimization
    Cai, Zixing
    Wang, Yong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 658 - 675
  • [35] A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization
    Tan, KC
    Lee, TH
    Khoo, D
    Khor, EF
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (04): : 537 - 556
  • [36] A constrained optimization evolutionary algorithm based on multiobjective optimization techniques
    Wang, Y
    Cai, ZX
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1081 - 1087
  • [37] Line Topology Identification Using Multiobjective Evolutionary Computation
    Sales, Claudomiro
    Rodrigues, Roberto M.
    Lindqvist, Fredrik
    Costa, Joao
    Klautau, Aldebaro
    Ericson, Klas
    Rius i Riu, Jaume
    Borjesson, Per Ola
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (03) : 715 - 729
  • [38] An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    Xue, Xingsi
    Liu, Hailin
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3306 - 3319
  • [39] An evolutionary algorithm with spatially distributed surrogates for multiobjective optimization
    Isaacs, Amitay
    Ray, Tapabrata
    Smith, Warren
    PROGRESS IN ARTIFICIAL LIFE, PROCEEDINGS, 2007, 4828 : 257 - 268
  • [40] Ship Hull Structural Multiobjective Optimization by Evolutionary Algorithm
    Sekulski, Zbigniew
    JOURNAL OF SHIP RESEARCH, 2014, 58 (02): : 45 - 69