Quantum duality in electromagnetism and the fine structure constant

被引:13
作者
Cordova, Clay [1 ,2 ]
Ohmori, Kantaro [3 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[2] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[3] Univ Tokyo, Fac Sci, Tokyo 1130033, Japan
关键词
D O I
10.1103/PhysRevD.109.105019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe the interplay between electric-magnetic duality and higher symmetry in Maxwell theory. When the fine structure constant is rational, the theory admits noninvertible symmetries which can be realized as composites of electric-magnetic duality and gauging a discrete subgroup of the one -form global symmetry. These noninvertible symmetries are approximate quantum invariances of the natural world which emerge in the infrared below the mass scale of charged particles. We construct these symmetries explicitly as topological defects and illustrate their action on local and extended operators. We also describe their action on boundary conditions and illustrate some consequences of the symmetry for Hilbert spaces of the theory defined in finite volume.
引用
收藏
页数:14
相关论文
共 49 条
[21]   Noninvertible Time-Reversal Symmetry [J].
Choi, Yichul ;
Lam, Ho Tat ;
Shao, Shu-Heng .
PHYSICAL REVIEW LETTERS, 2023, 130 (13)
[22]   Noninvertible Global Symmetries in the Standard Model [J].
Choi, Yichul ;
Lam, Ho Tat ;
Shao, Shu-Heng .
PHYSICAL REVIEW LETTERS, 2022, 129 (16)
[23]   Noninvertible duality defects in 3+1 dimensions [J].
Choi, Yichul ;
Cordova, Clay ;
Hsin, Po-Shen ;
Lam, Ho Tat ;
Shao, Shu-Heng .
PHYSICAL REVIEW D, 2022, 105 (12)
[24]  
Copetti C, 2023, Arxiv, DOI arXiv:2305.18282
[25]  
Cordova C., 2022, arXiv
[26]   Noninvertible Chiral Symmetry and Exponential Hierarchies [J].
Cordova, Clay ;
Ohmori, Kantaro .
PHYSICAL REVIEW X, 2023, 13 (01)
[27]   Non-invertible symmetries along 4d RG flows [J].
Damia, Jeremias Aguilera ;
Argurio, Riccardo ;
Benini, Francesco ;
Benvenuti, Sergio ;
Copetti, Christian ;
Tizzano, Luigi .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
[28]  
Das A., 2022, arXiv
[29]   A Goldstone theorem for continuous non-invertible symmetries [J].
Etxebarria, Inaki Garcia ;
Iqbal, Nabil .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
[30]  
Freed DS, 2024, Arxiv, DOI arXiv:2209.07471