MMIDNet: Secure Human Identification Using Millimeter-wave Radar and Deep Learning

被引:0
|
作者
Shen, Zichao [1 ]
Nunez-Yanez, Jose [2 ]
Dahnoun, Naim [1 ]
机构
[1] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol, Avon, England
[2] Univ Linkoping, Dept Elect Engn, Linkoping, Sweden
来源
2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024 | 2024年
关键词
Millimeter-wave radar; Point cloud; Human identification; Data processing; Deep learning; IoT application;
D O I
10.1109/MECO62516.2024.10577920
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an innovative approach using deep learning for human identification utilizing millimeter-wave (mmWave) radar technology. Unlike conventional vision methods, our approach ensures privacy and accuracy in various indoor settings. Leveraging partial PointNet, Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (Bi-LSTM) network components, we propose a unique neural network architecture named MMIDNet, designed to directly process point cloud data from mmWave radar. Our system achieves an impressive identification accuracy of 92.4% for 12 individuals. The research encompasses data collection, system design, and evaluation, highlighting the potential of mmWave radar combined with deep learning for secure and efficient human identification in Internet of Things (IoT) applications.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 50 条
  • [31] Mutual interference of millimeter-wave radar systems
    Brooker, Graham M.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2007, 49 (01) : 170 - 181
  • [32] A practical millimeter-wave radar calibration target
    Ruoskanen, J
    Eskelinen, P
    Heikkila, H
    Kuosmanen, P
    Kiuru, T
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2004, 46 (02) : 94 - 97
  • [33] Deep learning for fast channel estimation in millimeter-wave MIMO systems
    Lyu, Siting
    Li, Xiaohui
    Fan, Tao
    Liu, Jiawen
    Shi, Mingli
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2022, 33 (06) : 1088 - 1095
  • [34] Deep Learning Based Nonlinear Signal Detection in Millimeter-Wave Communications
    Liu, Hongfu
    Yang, Xu
    Chen, Peijun
    Sun, Mengwei
    Li, Bin
    Zhao, Chenglin
    IEEE ACCESS, 2020, 8 : 158883 - 158892
  • [35] Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
    Ghamsari, Mohammad Hossein Koohi
    Imanbeygi, Ehsan
    Ahmadi-Boroujeni, Mehdi
    2024 32ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEE 2024, 2024, : 152 - 156
  • [36] Multi-Person Action Recognition Based on Millimeter-Wave Radar Point Cloud
    Dang, Xiaochao
    Fan, Kai
    Li, Fenfang
    Tang, Yangyang
    Gao, Yifei
    Wang, Yue
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [37] Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar
    Lim, Seungchan
    Park, Chaewoon
    Lee, Seongjoo
    Jung, Yunho
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [38] Deep Neural Network Based Multiple Targets DOA Estimation for Millimeter-Wave Radar
    Tang, Geyu
    Gao, Xingyu
    Chen, Zhenyu
    Zhang, Yu
    Zhong, Huicai
    Li, Menggang
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 433 - 438
  • [39] Multi-target Detection and Tracking with Fusion of Millimeter-wave Radar and Deep Vision
    Gan Y.
    Zheng L.
    Zhang Z.
    Li Y.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (07): : 1022 - 1029and1056
  • [40] Fall Detection System Using Millimeter-Wave Radar Based on Neural Network and Information Fusion
    Yao, Yicheng
    Liu, Changyu
    Zhang, Hao
    Yan, Baiju
    Jian, Pu
    Wang, Peng
    Du, Lidong
    Chen, Xianxiang
    Han, Baoshi
    Fang, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21038 - 21050