MMIDNet: Secure Human Identification Using Millimeter-wave Radar and Deep Learning

被引:0
|
作者
Shen, Zichao [1 ]
Nunez-Yanez, Jose [2 ]
Dahnoun, Naim [1 ]
机构
[1] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol, Avon, England
[2] Univ Linkoping, Dept Elect Engn, Linkoping, Sweden
关键词
Millimeter-wave radar; Point cloud; Human identification; Data processing; Deep learning; IoT application;
D O I
10.1109/MECO62516.2024.10577920
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an innovative approach using deep learning for human identification utilizing millimeter-wave (mmWave) radar technology. Unlike conventional vision methods, our approach ensures privacy and accuracy in various indoor settings. Leveraging partial PointNet, Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (Bi-LSTM) network components, we propose a unique neural network architecture named MMIDNet, designed to directly process point cloud data from mmWave radar. Our system achieves an impressive identification accuracy of 92.4% for 12 individuals. The research encompasses data collection, system design, and evaluation, highlighting the potential of mmWave radar combined with deep learning for secure and efficient human identification in Internet of Things (IoT) applications.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 50 条
  • [31] Road Condition Identification from Millimeter-wave Radar Backscatter Measurements
    Asuzu, Peter
    Thompson, Charles
    2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 12 - 16
  • [32] Measurement of Multiple Simultaneous Human Vital Signs using a Millimeter-Wave FMCW Radar
    Bresnahan, Drew G.
    Li, Yang
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [33] Person Identification With Millimeter-Wave Radar in Realistic Smart Home Scenarios
    Xia, Zhaoyang
    Ding, Genming
    Wang, Hui
    Xu, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] Investigation of Patellar Deep Tendon Reflex Using Millimeter-Wave Radar and Motion Capture Technologies
    Bresnahan, Drew G.
    Koziol, Scott
    Li, Yang
    IEEE ACCESS, 2024, 12 : 9220 - 9228
  • [35] HeRe: Heartbeat Signal Reconstruction for Low-Power Millimeter-Wave Radar Based on Deep Learning
    Wang, Haili
    Du, Fuchuan
    Zhu, Hao
    Zhang, Zhuangzhuang
    Wang, Yizhao
    Cao, Qixin
    Zhu, Xiaoxiao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Human Behavior Recognition Based on Multi-Dimensional Feature Learning of Millimeter-Wave Radar
    Wang, Xiangfeng
    Xia, Zhaoyang
    Wang, Haipeng
    Xu, Feng
    2021 SIGNAL PROCESSING SYMPOSIUM (SPSYMPO), 2021, : 284 - 288
  • [37] Monitoring Person on Bed Using Millimeter-Wave Radar Sensor
    Jang, Min-ho
    Kang, Sung-wook
    Lee, Seongwook
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [38] Automotive Velocity Sensing Using Millimeter-Wave Interferometric Radar
    Klinefelter, Eric
    Nanzer, Jeffrey A.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (01) : 1096 - 1104
  • [39] A Systematic Study on Object Recognition Using Millimeter-wave Radar
    Devnath, Maloy Kumar
    Chakma, Avijoy
    Anwar, Mohammad Saeid
    Dey, Emon
    Hasan, Zahid
    Conn, Marc
    Pal, Biplab
    Roy, Nirmalya
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 57 - 64
  • [40] Millimeter-Wave Radar Localization Using Indoor Multipath Effect
    Hao, Zhanjun
    Yan, Hao
    Dang, Xiaochao
    Ma, Zhongyu
    Jin, Peng
    Ke, Wenze
    SENSORS, 2022, 22 (15)