MMIDNet: Secure Human Identification Using Millimeter-wave Radar and Deep Learning

被引:0
|
作者
Shen, Zichao [1 ]
Nunez-Yanez, Jose [2 ]
Dahnoun, Naim [1 ]
机构
[1] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol, Avon, England
[2] Univ Linkoping, Dept Elect Engn, Linkoping, Sweden
来源
2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024 | 2024年
关键词
Millimeter-wave radar; Point cloud; Human identification; Data processing; Deep learning; IoT application;
D O I
10.1109/MECO62516.2024.10577920
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an innovative approach using deep learning for human identification utilizing millimeter-wave (mmWave) radar technology. Unlike conventional vision methods, our approach ensures privacy and accuracy in various indoor settings. Leveraging partial PointNet, Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (Bi-LSTM) network components, we propose a unique neural network architecture named MMIDNet, designed to directly process point cloud data from mmWave radar. Our system achieves an impressive identification accuracy of 92.4% for 12 individuals. The research encompasses data collection, system design, and evaluation, highlighting the potential of mmWave radar combined with deep learning for secure and efficient human identification in Internet of Things (IoT) applications.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 50 条
  • [21] A Deep Learning Approach for Microwave and Millimeter-Wave Radiometer Calibration
    Ogut, Mehmet
    Bosch-Lluis, Xavier
    Reising, Steven C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5344 - 5355
  • [22] Detecting the Presence of Intrusive Drilling in Secure Transport Containers Using Non-Contact Millimeter-Wave Radar
    Wagner, Samuel
    Alkasimi, Ahmad
    Pham, Anh-Vu
    SENSORS, 2022, 22 (07)
  • [23] DEEP LEARNING BEAM OPTIMIZATION IN MILLIMETER-WAVE COMMUNICATION SYSTEMS
    Ismayilov, Rafail
    Cavalcante, Renato L. G.
    Stanczak, Slawomir
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 581 - 585
  • [24] A Deep Learning Approach for Reconstruction in Millimeter-Wave Imaging Systems
    Rostami, Peyman
    Zamani, Hojatollah
    Fakharzadeh, Mohammad
    Amini, Arash
    Marvasti, Farokh
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (01) : 1180 - 1184
  • [25] RPCRS: Human Activity Recognition Using Millimeter Wave Radar
    Huang, Tingpei
    Liu, Guoyong
    Li, Shibao
    Liu, Jianhang
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 122 - 129
  • [26] Sea Fog Recognition near Coastline Using Millimeter-Wave Radar Based on Machine Learning
    Li, Tao
    Qiu, Jianhua
    Xue, Jianjun
    ATMOSPHERE, 2024, 15 (09)
  • [27] A Convolutional Neural Network for Human Motion Recognition and Classification Using a Millimeter-Wave Doppler Radar
    Arab, Homa
    Ghaffari, Iman
    Chioukh, Lydia
    Tatu, Serioja Ovidiu
    Dufour, Steven
    IEEE SENSORS JOURNAL, 2022, 22 (05) : 4494 - 4502
  • [28] Millimeter-wave radar for vital signs monitoring
    Churkin, Sergei
    Anishchenko, Lesya
    2015 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS AND ELECTRONIC SYSTEMS (COMCAS), 2015,
  • [29] Dual-Biometric Human Identification Using Radar Deep Transfer Learning
    Alkasimi, Ahmad
    Shepard, Tyler
    Wagner, Samuel
    Pancrazio, Stephen
    Anh-Vu Pham
    Gardner, Christopher
    Funsten, Brad
    SENSORS, 2022, 22 (15)
  • [30] Push the Limit of Millimeter-wave Radar Localization
    Zhang, Guidong
    Chi, Guoxuan
    Zhang, Yi
    Ding, Xuan
    Yang, Zheng
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2023, 19 (03)