MMIDNet: Secure Human Identification Using Millimeter-wave Radar and Deep Learning

被引:0
|
作者
Shen, Zichao [1 ]
Nunez-Yanez, Jose [2 ]
Dahnoun, Naim [1 ]
机构
[1] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol, Avon, England
[2] Univ Linkoping, Dept Elect Engn, Linkoping, Sweden
关键词
Millimeter-wave radar; Point cloud; Human identification; Data processing; Deep learning; IoT application;
D O I
10.1109/MECO62516.2024.10577920
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an innovative approach using deep learning for human identification utilizing millimeter-wave (mmWave) radar technology. Unlike conventional vision methods, our approach ensures privacy and accuracy in various indoor settings. Leveraging partial PointNet, Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (Bi-LSTM) network components, we propose a unique neural network architecture named MMIDNet, designed to directly process point cloud data from mmWave radar. Our system achieves an impressive identification accuracy of 92.4% for 12 individuals. The research encompasses data collection, system design, and evaluation, highlighting the potential of mmWave radar combined with deep learning for secure and efficient human identification in Internet of Things (IoT) applications.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 50 条
  • [1] Application of Deep Learning on Millimeter-Wave Radar Signals: A Review
    Abdu, Fahad Jibrin
    Zhang, Yixiong
    Fu, Maozhong
    Li, Yuhan
    Deng, Zhenmiao
    SENSORS, 2021, 21 (06) : 1 - 46
  • [2] Deep Learning Approach for Gesture Recognition on Millimeter-Wave Radar
    Liu, Jiang
    Liu, Yuming
    Wang, Yunxuan
    Chen, Yating
    Zhou, Tianxiang
    Huang, Yan
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [3] Measurement of Deep Tendon Reflexes Using a Millimeter-Wave Radar
    Bresnahan, Drew G.
    Lee, George
    Li, Yang
    IEEE SENSORS LETTERS, 2022, 6 (05)
  • [4] Noninvasive Human Activity Recognition Using Millimeter-Wave Radar
    Yu, Chengxi
    Xu, Zhezhuang
    Yan, Kun
    Chien, Ying-Ren
    Fang, Shih-Hau
    Wu, Hsiao-Chun
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 3036 - 3047
  • [5] MILLIMETER-WAVE RADAR
    BATES, RN
    STOVE, AG
    PHILIPS JOURNAL OF RESEARCH, 1986, 41 (03) : 206 - 218
  • [6] Machine Learning Based Object Classification and Identification Scheme Using an Embedded Millimeter-Wave Radar Sensor
    Arab, Homa
    Ghaffari, Iman
    Chioukh, Lydia
    Tatu, Serioja
    Dufour, Steven
    SENSORS, 2021, 21 (13)
  • [7] MiSleep: Human Sleep Posture Identification from Deep Learning Augmented Millimeter-wave Wireless Systems
    Adhikari, Aakriti
    Sur, Sanjib
    ACM TRANSACTIONS ON INTERNET OF THINGS, 2024, 5 (02):
  • [8] MILLIMETER-WAVE RADAR TECHNOLOGY
    HEIDEN, DZ
    ELECTRICAL COMMUNICATION, 1982, 57 (01): : 70 - 78
  • [9] Surface Classification with Millimeter-Wave Radar Using Temporal Features and Machine Learning
    Montgomery, David
    Holmen, Gaston
    Almers, Peter
    Jakobsson, Andreas
    2019 16TH EUROPEAN RADAR CONFERENCE (EURAD), 2019, : 1 - 4
  • [10] Automotive millimeter-wave radar
    System and Electronics Engineering Dept., II, Toyota Central R and D Labs., Inc., Nagakute-shi, Japan
    J. Inst. Electron. Inf. Commun. Eng., 10 (872-875): : 872 - 875