MMIDNet: Secure Human Identification Using Millimeter-wave Radar and Deep Learning

被引:0
|
作者
Shen, Zichao [1 ]
Nunez-Yanez, Jose [2 ]
Dahnoun, Naim [1 ]
机构
[1] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol, Avon, England
[2] Univ Linkoping, Dept Elect Engn, Linkoping, Sweden
来源
2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024 | 2024年
关键词
Millimeter-wave radar; Point cloud; Human identification; Data processing; Deep learning; IoT application;
D O I
10.1109/MECO62516.2024.10577920
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an innovative approach using deep learning for human identification utilizing millimeter-wave (mmWave) radar technology. Unlike conventional vision methods, our approach ensures privacy and accuracy in various indoor settings. Leveraging partial PointNet, Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (Bi-LSTM) network components, we propose a unique neural network architecture named MMIDNet, designed to directly process point cloud data from mmWave radar. Our system achieves an impressive identification accuracy of 92.4% for 12 individuals. The research encompasses data collection, system design, and evaluation, highlighting the potential of mmWave radar combined with deep learning for secure and efficient human identification in Internet of Things (IoT) applications.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 50 条
  • [1] Application of Deep Learning on Millimeter-Wave Radar Signals: A Review
    Abdu, Fahad Jibrin
    Zhang, Yixiong
    Fu, Maozhong
    Li, Yuhan
    Deng, Zhenmiao
    SENSORS, 2021, 21 (06) : 1 - 46
  • [2] Measurement of Deep Tendon Reflexes Using a Millimeter-Wave Radar
    Bresnahan, Drew G.
    Lee, George
    Li, Yang
    IEEE SENSORS LETTERS, 2022, 6 (05)
  • [3] Surface Classification with Millimeter-Wave Radar Using Temporal Features and Machine Learning
    Montgomery, David
    Holmen, Gaston
    Almers, Peter
    Jakobsson, Andreas
    2019 16TH EUROPEAN RADAR CONFERENCE (EURAD), 2019, : 1 - 4
  • [4] Position estimation and calibration for high precision human positioning and tracking using millimeter-wave radar
    Xu, Zhimeng
    Wu, Zhenbin
    Li, Dan
    Chen, Liangqin
    Zhang, Shanshan
    Chen, Zhizhang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [5] Driver Head-Hand Cooperative Action Recognition Based on FMCW Millimeter-Wave Radar and Deep Learning
    Zhang, Lianlong
    Chen, Xiaodong
    Chen, Zexin
    Zheng, Jiawen
    Diao, Yinliang
    SENSORS, 2025, 25 (08)
  • [6] Human fall detection method using millimeter-wave radar based on rdsnet
    Yuan Z.
    Zhou X.
    Liu X.
    Lu D.
    Deng B.
    Ma Y.
    Lu, Dawei (davidloo.nudt@gmail.com), 1600, Institute of Electronics Chinese Academy of Sciences (10): : 656 - 664
  • [7] Analysis of Human Kinetics using Millimeter-wave Micro-Doppler Radar
    Singh, Ashish Kumar
    Kim, Yong Hoon
    PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN COMPUTER INTERACTION (IHCI 2015), 2016, 84 : 36 - 40
  • [8] Hand gesture recognition based on millimeter-wave radar using iFormer
    Chen, Jiaxin
    Wen, Pengwei
    Chen, Gao
    Wang, Yu
    Wang, Yifan
    Zheng, Jianpeng
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 22 - 26
  • [9] GaitCube: Deep Data Cube Learning for Human Recognition With Millimeter-Wave Radio
    Ozturk, Muhammed Zahid
    Wu, Chenshu
    Wang, Beibei
    Liu, K. J. Ray
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 546 - 557
  • [10] Urban Traffic Imaging Using Millimeter-Wave Radar
    Yang, Bo
    Zhang, Hua
    Chen, Yurong
    Zhou, Yongjun
    Peng, Yu
    REMOTE SENSING, 2022, 14 (21)