Comprehensive Characterisation of a Low-Frequency-Vibration Energy Harvester

被引:2
作者
Plaza, Aitor [1 ]
Iriarte, Xabier [1 ,2 ]
Castellano-Aldave, Carlos [3 ]
Carlosena, Alfonso [2 ,3 ]
机构
[1] Publ Univ Navarre UPNA, Engn Dept, Campus Arrosadia, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Smart Cities ISC, Arrosadia Campus, Pamplona 31006, Spain
[3] Univ Publ Navarra, Dept Elect Elect & Commun Engn, Arrosadia Campus, Pamplona 31006, Spain
关键词
energy harvesting; vibration harvester; model identification; low-frequency vibrations; wind turbines; PERFORMANCE; FABRICATION;
D O I
10.3390/s24123813
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we describe a measurement procedure to fully characterise a novel vibration energy harvester operating in the ultra-low-frequency range. The procedure, which is more thorough than those usually found in the literature, comprises three main stages: modelling, experimental characterisation and parameter identification. Modelling is accomplished in two alternative ways, a physical model (white box) and a mixed one (black box), which model the magnetic interaction via Fourier series. The experimental measurements include not only the input (acceleration)-output (energy) response but also the (internal) dynamic behaviour of the system, making use of a synchronised image processing and signal acquisition system. The identification procedure, based on maximum likelihood, estimates all the relevant parameters to characterise the system to simulate its behaviour and helps to optimise its performance. While the method is custom-designed for a particular harvester, the comprehensive approach and most of its procedures can be applied to similar harvesters.
引用
收藏
页数:24
相关论文
共 43 条
[1]   Scopes, challenges and approaches of energy harvesting for wireless sensor nodes in machine condition monitoring systems: A review [J].
Ahmad, Iftikhar ;
Hee, Lim Meng ;
Abdelrhman, Ahmed M. ;
Imam, Syed Asad ;
Leong, M. S. .
MEASUREMENT, 2021, 183
[2]   Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola [J].
Ahn, SJ ;
Rauh, W ;
Warnecke, HJ .
PATTERN RECOGNITION, 2001, 34 (12) :2283-2303
[3]   Modeling a Nonlinear Harvester for Low Energy Vibrations [J].
Ando, Bruno ;
Baglio, Salvatore ;
Marletta, Vincenzo ;
Bulsara, Adi R. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (05) :1619-1627
[4]   Investigation of a Nonlinear Energy Harvester [J].
Ando, Bruno ;
Baglio, Salvatore ;
Bulsara, Adi R. ;
Marletta, Vincenzo ;
Pistorio, Antonio .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (05) :1067-1075
[5]  
Aster RC, 2019, PARAMETER ESTIMATION AND INVERSE PROBLEMS, 3RD EDITION
[6]   A versatile and fully instrumented test station for piezoelectric energy harvesters [J].
Batra, A. K. ;
Currie, J. R. ;
Alomari, A. A. ;
Aggarwal, M. D. ;
Bowen, C. R. .
MEASUREMENT, 2018, 114 :9-15
[7]   Lagrangian descriptions of dissipative systems: a review [J].
Bersani, Alberto Maria ;
Caressa, Paolo .
MATHEMATICS AND MECHANICS OF SOLIDS, 2021, 26 (06) :785-803
[8]   Electromagnetic energy harvesting using magnetic levitation architectures: A review [J].
Carneiro, Pedro ;
Soares dos Santos, Marco P. ;
Rodrigues, Andre ;
Ferreira, Jorge A. F. ;
Simoes, Jose A. O. ;
Torres Marques, A. ;
Kholkin, Andrei L. .
APPLIED ENERGY, 2020, 260
[9]   Ultra-low frequency multidirectional harvester for wind turbines [J].
Castellano-Aldave, Carlos ;
Carlosena, Alfonso ;
Iriarte, Xabier ;
Plaza, Aitor .
APPLIED ENERGY, 2023, 334
[10]  
Cullity B. D., 2011, Introduction to magnetic materials