VPE-WSVAD: Visual prompt exemplars for weakly-supervised video anomaly detection

被引:10
作者
Su, Yong [1 ]
Tan, Yuyu [1 ]
Xing, Meng [2 ,3 ]
An, Simin [1 ]
机构
[1] Tianjin Normal Univ, Tianjin 300387, Peoples R China
[2] Tianjin Univ, Tianjin 300350, Peoples R China
[3] Queen Mary Univ London, London E1 4NS, England
关键词
Video anomaly detection; Weakly-supervised; Visual prompt exemplars; Prompt retrieval network; Proposal filtering mechanism; Prompt likelihood learning; RECONSTRUCTION;
D O I
10.1016/j.knosys.2024.111978
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly Supervised Video Anomaly Detection (WSVAD) plays a crucial role in visual surveillance by effectively distinguishing anomalies from normality with only video-level annotations; nevertheless, due to inherent limitations, including imbalanced data, intra-bag similarity , and snippet entanglement , existing methodologies prone to a bias towards normality. This paper proposes a novel framework, Visual Prompt Exemplars-based WSVAD termed VPE-WSVAD, to enhance discriminative representations of anomalies against normality incorporating scenario-awareness visual prompt exemplars. The proposed VPE-WSVAD framework comprises three key components. Firstly, the prompt retrieval network generates potential abnormal proposals consistent with visual prompt exemplars at the frame level. Secondly, the proposal filtering mechanism aims to select the proposal with the highest confidence score to represent potential anomalies in the snippet. Finally, prompt likelihood learning is designed to capture the correlations between proposals (w.r.t prompt exemplars) snippets, generating discriminative representations for each snippet. By incorporating visual prompt exemplars, our method provides more detailed reporting of abnormal events, including when, where, and what. To validate the efficacy of our method, we conducted comprehensive evaluations on three publicly available datasets. experimental results conclusively demonstrate the superiority of our approach, achieving an impressive framelevel area under the curve (AUC) of 96.88% on the ShanghaiTech dataset and 99.86% on the UCSD Ped2 dataset. Our code will be released in the future.
引用
收藏
页数:12
相关论文
共 86 条
[1]   UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [J].
Acsintoae, Andra ;
Florescu, Andrei ;
Georgescu, Mariana-Iuliana ;
Mare, Tudor ;
Sumedrea, Paul ;
Ionescu, Radu Tudor ;
Khan, Fahad Shahbaz ;
Shah, Mubarak .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :20111-20121
[2]   SSMTL plus plus : Revisiting self-supervised multi-task learning for video anomaly detection [J].
Barbalau, Antonio ;
Ionescu, Radu Tudor ;
Georgescu, Mariana-Iuliana ;
Dueholm, Jacob ;
Ramachandra, Bharathkumar ;
Nasrollahi, Kamal ;
Khan, Fahad Shahbaz ;
Moeslund, Thomas B. ;
Shah, Mubarak .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
[3]   SITUATIONISM IN PSYCHOLOGY - ANALYSIS AND A CRITIQUE [J].
BOWERS, KS .
PSYCHOLOGICAL REVIEW, 1973, 80 (05) :307-336
[4]  
Cai RC, 2021, AAAI CONF ARTIF INTE, V35, P938
[5]   WEAKLY SUPERVISED VIDEO ANOMALY DETECTION BASED ON CROSS-BATCH CLUSTERING GUIDANCE [J].
Cao, Congqi ;
Zhang, Xin ;
Zhang, Shizhou ;
Wang, Peng ;
Zhang, Yanning .
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, :2723-2728
[6]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[7]   Clustering Driven Deep Autoencoder for Video Anomaly Detection [J].
Chang, Yunpeng ;
Tu, Zhigang ;
Xie, Wei ;
Yuan, Junsong .
COMPUTER VISION - ECCV 2020, PT XV, 2020, 12360 :329-345
[8]   NM-GAN: Noise-modulated generative adversarial network for video anomaly detection [J].
Chen, Dongyue ;
Yue, Lingyi ;
Chang, Xingya ;
Xu, Ming ;
Jia, Tong .
PATTERN RECOGNITION, 2021, 116
[9]  
Chen SF, 2022, Arxiv, DOI arXiv:2205.13535
[10]   Explicit Metric-Based Multiconcept Multi-Instance Learning With Triplet and Superbag [J].
Chi, Ziqiu ;
Wang, Zhe ;
Du, Wenli .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) :5888-5897