Spatiotemporal Analysis of XCO2 and Its Relationship to Urban and Green Areas of China's Major Southern Cities from Remote Sensing and WRF-Chem Modeling Data from 2010 to 2019

被引:1
作者
Tan, Zixuan [1 ]
Wang, Jinnian [1 ]
Yu, Zhenyu [1 ]
Luo, Yiyun [1 ]
机构
[1] Guangzhou Univ, Sch Geog & Remote Sensing, Guangzhou 510006, Peoples R China
来源
GEOGRAPHIES | 2023年 / 3卷 / 02期
基金
国家重点研发计划;
关键词
CO2; concentrations; remote sensing; WRF-Chem model; satellite observations; China's major southern cities; void fillings; spatial and temporal analysis; RETRIEVAL ALGORITHM; SATELLITE-OBSERVATIONS; CO2; COEFFICIENT;
D O I
10.3390/geographies3020013
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Monitoring CO2 concentrations is believed to be an effective measure for assisting in the control of greenhouse gas emissions. Satellite measurements compensate for the sparse and uneven spatial distribution of ground observation stations, allowing for the collection of a wide range of CO2 concentration data. However, satellite monitoring's spatial coverage remains limited. This study fills the knowledge gaps of column-averaged dry-air mole fraction of CO2 (XCO2) products retrieved from the Greenhouse Gases Observing Satellite (GOSAT) and Orbiting Carbon Observatory Satellite (OCO-2) based on the normalized output of atmospheric chemical models, WRF-Chem, in Southern China during 2010-2019. Hefei (HF)/Total Carbon Column Observing Network (TCCON), Lulin (LLN)/World Data Centre for Greenhouse Gases (WDCGG) station observations were used to validate the results of void filling with an acceptable accuracy for spatiotemporal analysis (R = 0.96, R-2 = 0.92, RMSE = 2.44 ppm). Compared to the IDW (inverse distance weighting) and Kriging (ordinary Kriging) interpolation methods, this method has a higher validation accuracy. In addition, spatiotemporal distributions of CO2, as well as the sensitivity of CO2 concentration to the urban built-up areas and urban green space areas in China's major southern cities during 2010-2019, are discussed. The approximate annual average concentrations have gradually increased from 388.56 to 414.72 ppm, with an annual growth rate of 6.73%, and the seasonal cycle presents a maximum in spring and a minimum in summer or autumn from 2010 to 2019. CO2 concentrations have a strong positive correlation with the impervious area to city area ratio, while anomaly values of the impervious area to urban green area ratio occurred in individual cities. The experimental findings demonstrate the viability of the study hypothesis that combines remote sensing data with the WRF-Chem model to produce a local area dataset with high spatial resolution and an extracted urban unit from statistical data.
引用
收藏
页码:246 / 267
页数:22
相关论文
共 56 条
[1]  
Ades M, 2020, B AM METEOROL SOC, V101, pS17
[2]   Financial Development, Institutional Quality, and the Influence of Various Environmental Factors on Carbon Dioxide Emissions: Exploring the Nexus in China [J].
Amin, Azka ;
Ameer, Waqar ;
Yousaf, Hazrat ;
Akbar, Muhammad .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 9
[3]   Spatio-temporal heterogeneity of logistics CO2 emissions and their influencing factors in China: An analysis based on spatial error model and geographically and temporally weighted regression model [J].
Bai, Dongling ;
Dong, Qianli ;
Khan, Syed Abdul Rehman ;
Li, Jinfeng ;
Wang, Dongfang ;
Chen, Yan ;
Wu, Jiani .
ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2022, 28
[4]  
Barrie L., 2020, WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020
[5]  
Biau G, 2012, J MACH LEARN RES, V13, P1063
[6]   Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission [J].
Boesch, Hartmut ;
Baker, David ;
Connor, Brian ;
Crisp, David ;
Miller, Charles .
REMOTE SENSING, 2011, 3 (02) :270-304
[7]   The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets [J].
Buchwitz, M. ;
Reuter, M. ;
Schneising, O. ;
Boesch, H. ;
Guerlet, S. ;
Dils, B. ;
Aben, I. ;
Armante, R. ;
Bergamaschi, P. ;
Blumenstock, T. ;
Bovensmann, H. ;
Brunner, D. ;
Buchmann, B. ;
Burrows, J. P. ;
Butz, A. ;
Chedin, A. ;
Chevallier, F. ;
Crevoisier, C. D. ;
Deutscher, N. M. ;
Frankenberg, C. ;
Hase, F. ;
Hasekamp, O. P. ;
Heymann, J. ;
Kaminski, T. ;
Laeng, A. ;
Lichtenberg, G. ;
De Maziere, M. ;
Noel, S. ;
Notholt, J. ;
Orphal, J. ;
Popp, C. ;
Parker, R. ;
Scholze, M. ;
Sussmann, R. ;
Stiller, G. P. ;
Warneke, T. ;
Zehner, C. ;
Bril, A. ;
Crisp, D. ;
Griffith, D. W. T. ;
Kuze, A. ;
O'Dell, C. ;
Oshchepkov, S. ;
Sherlock, V. ;
Suto, H. ;
Wennberg, P. ;
Wunch, D. ;
Yokota, T. ;
Yoshida, Y. .
REMOTE SENSING OF ENVIRONMENT, 2015, 162 :344-362
[8]   Toward accurate CO2 and CH4 observations from GOSAT [J].
Butz, A. ;
Guerlet, S. ;
Hasekamp, O. ;
Schepers, D. ;
Galli, A. ;
Aben, I. ;
Frankenberg, C. ;
Hartmann, J. -M. ;
Tran, H. ;
Kuze, A. ;
Keppel-Aleks, G. ;
Toon, G. ;
Wunch, D. ;
Wennberg, P. ;
Deutscher, N. ;
Griffith, D. ;
Macatangay, R. ;
Messerschmidt, J. ;
Notholt, J. ;
Warneke, T. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[9]   Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature [J].
Chai, T. ;
Draxler, R. R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :1247-1250
[10]  
Clerbaux C, 1999, IEEE T GEOSCI REMOTE, V37, P1657, DOI 10.1109/36.763283