COMPACT LIE GROUPS AND COMPLEX REDUCTIVE GROUPS

被引:0
作者
Jones, John [1 ]
Rumynin, Dmitriy [1 ]
Thomas, Adam [1 ]
机构
[1] Univ Warwick, Dept Math, Coventry CV4 7AL, England
关键词
Compact Lie group; reductive group; Tannaka formalism; infinity category;
D O I
10.4310/HHA.2024.v26.n1.a12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of top ological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 12 条
[1]  
Barut A., 1980, ELECTRODYNAMICS CLAS
[2]   Homomorphisms of Algebraic Groups: Representability and Rigidity [J].
Brion, Michel .
MICHIGAN MATHEMATICAL JOURNAL, 2022, 72 :51-76
[3]   The length and depth of compact Lie groups [J].
Burness, Timothy C. ;
Liebeck, Martin W. ;
Shalev, Aner .
MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) :1457-1476
[4]  
Chevalley C., 1946, Princeton Math. Ser., V8
[5]  
Deligne P., 1982, Hodge cycles, motives, and Shimura varieties, V900, P101, DOI DOI 10.1007/978-3-540-38955
[6]   A NEW DUALITY-THEORY FOR COMPACT-GROUPS [J].
DOPLICHER, S ;
ROBERTS, JE .
INVENTIONES MATHEMATICAE, 1989, 98 (01) :157-218
[7]  
Hazod W., 1998, J. Lie Theory, V8, P189
[8]  
Hochschild G., 1965, STRUCTURE LIE GROUPS
[9]  
Hochschild GerhardP., 1981, BASIC THEORY ALGEBRA
[10]  
Lurie J, 2009, ANN MATH STUD, P1