Deep learning enables automatic detection of joint damage progression in rheumatoid arthritis-model development and external validation

被引:1
作者
Venalainen, Mikko S. [1 ,2 ,3 ]
Biehl, Alexander [1 ,2 ]
Holstila, Milja [4 ,5 ]
Kuusalo, Laura [5 ,6 ]
Elo, Laura L. [1 ,2 ,7 ]
机构
[1] Univ Turku, Turku Biosci Ctr, Tykistokatu 6 A, FI-20520 Turku, Finland
[2] Abo Akad Univ, Tykistokatu 6 A, FI-20520 Turku, Finland
[3] Turku Univ Hosp, Dept Med Phys, Turku, Finland
[4] Univ Turku, Dept Radiol, Turku, Finland
[5] Turku Univ Hosp, Turku, Finland
[6] Turku Univ, Ctr Rheumatol & Clin Immunol, Div Med, Turku, Finland
[7] Univ Turku, Inst Biomed, Turku, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
rheumatoid arthritis; radiographic joint damage; radiographic scoring; disease progression; deep learning; RADIOGRAPHIC PROGRESSION; MANAGEMENT; DIAGNOSIS; DISEASE;
D O I
10.1093/rheumatology/keae215
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives: Although deep learning has demonstrated substantial potential in automatic quantification of joint damage in RA, evidence for detecting longitudinal changes at an individual patient level is lacking. Here, we introduce and externally validate our automated RA scoring algorithm (AuRA), and demonstrate its utility for monitoring radiographic progression in a real-world setting. Methods: The algorithm, originally developed during the Rheumatoid Arthritis 2-Dialogue for Reverse Engineering Assessment and Methods (RA2-DREAM) challenge, was trained to predict expert-curated Sharp-van der Heijde total scores in hand and foot radiographs from two previous clinical studies (n = 367). We externally validated AuRA against data (n = 205) from Turku University Hospital and compared the performance against two top-performing RA2-DREAM solutions. Finally, for 54 patients, we extracted additional radiograph sets from another control visit to the clinic (average time interval of 4.6 years). Results: In the external validation cohort, with a root mean square error (RMSE) of 23.6, AuRA outperformed both top-performing RA2-DREAM algorithms (RMSEs 35.0 and 35.6). The improved performance was explained mostly by lower errors at higher expert-assessed scores. The longitudinal changes predicted by our algorithm were significantly correlated with changes in expert-assessed scores (Pearson's R = 0.74, P < 0.001). Conclusion: AuRA had the best external validation performance and demonstrated potential for detecting longitudinal changes in joint damage. Available from https://hub.docker.com/r/elolab/aura, our algorithm can easily be applied for automatic detection of radiographic progression in the future, reducing the need for laborious manual scoring.
引用
收藏
页码:1068 / 1076
页数:9
相关论文
共 25 条
  • [1] Diagnosis and Management of Rheumatoid Arthritis A Review
    Aletaha, Daniel
    Smolen, Josef S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 320 (13): : 1360 - 1372
  • [2] Distribution of erosions in hands and feet at the time for the diagnosis of RA and during 8-year follow-up
    Andersson, Maria L.
    Svensson, B.
    Forslind, K.
    [J]. CLINICAL RHEUMATOLOGY, 2021, 40 (05) : 1799 - 1810
  • [3] Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint
    Bird, Alix
    Oakden-Rayner, Lauren
    McMaster, Christopher
    Smith, Luke A.
    Zeng, Minyan
    Wechalekar, Mihir D.
    Ray, Shonket
    Proudman, Susanna
    Palmer, Lyle J.
    [J]. ARTHRITIS RESEARCH & THERAPY, 2022, 24 (01)
  • [4] Radiographic Severity of Rheumatoid Arthritis in African Americans: Results From a Multicenter Observational Study
    Bridges, S. Louis, Jr.
    Causey, Zenoria L.
    Burgos, Paula I.
    Huynh, B. Quynh N.
    Hughes, Laura B.
    Danila, Maria I.
    van Everdingen, Amalia
    Ledbetter, Stephanie
    Conn, Doyt L.
    Tamhane, Ashutosh
    Westfall, Andrew O.
    Jonas, Beth L.
    Callahan, Leigh F.
    Smith, Edwin A.
    Brasington, Richard
    Moreland, Larry W.
    Alarcon, Graciela S.
    van der Heijde, Desiree M.
    [J]. ARTHRITIS CARE & RESEARCH, 2010, 62 (05) : 624 - 631
  • [5] Opportunities and obstacles for deep learning in biology and medicine
    Ching, Travers
    Himmelstein, Daniel S.
    Beaulieu-Jones, Brett K.
    Kalinin, Alexandr A.
    Do, Brian T.
    Way, Gregory P.
    Ferrero, Enrico
    Agapow, Paul-Michael
    Zietz, Michael
    Hoffman, Michael M.
    Xie, Wei
    Rosen, Gail L.
    Lengerich, Benjamin J.
    Israeli, Johnny
    Lanchantin, Jack
    Woloszynek, Stephen
    Carpenter, Anne E.
    Shrikumar, Avanti
    Xu, Jinbo
    Cofer, Evan M.
    Lavender, Christopher A.
    Turaga, Srinivas C.
    Alexandari, Amr M.
    Lu, Zhiyong
    Harris, David J.
    DeCaprio, Dave
    Qi, Yanjun
    Kundaje, Anshul
    Peng, Yifan
    Wiley, Laura K.
    Segler, Marwin H. S.
    Boca, Simina M.
    Swamidass, S. Joshua
    Huang, Austin
    Gitter, Anthony
    Greene, Casey S.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
  • [6] EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis
    Colebatch, Alexandra N.
    Edwards, Christopher John
    Ostergaard, Mikkel
    van der Heijde, Desiree
    Balint, Peter V.
    D'Agostino, Maria-Antonietta
    Forslind, Kristina
    Grassi, Walter
    Haavardsholm, Espen A.
    Haugeberg, Glenn
    Jurik, Anne-Grethe
    Landewe, Robert B. M.
    Naredo, Esperanza
    O'Connor, Philip J.
    Ostendorf, Ben
    Potocki, Kristina
    Schmidt, Wolfgang A.
    Smolen, Josef S.
    Sokolovic, Sekib
    Watt, Iain
    Conaghan, Philip G.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 (06) : 804 - 814
  • [7] Radiographic progression and remission rates in early rheumatoid arthritis - MRI bone oedema and anti-CCP predicted radiographic progression in the 5-year extension of the double-blind randomised CIMESTRA trial
    Hetland, Merete L.
    Stengaard-Pedersen, Kristian
    Junker, Peter
    Ostergaard, Mikkel
    Ejbjerg, Bo J.
    Jacobsen, Soren
    Lottenburger, Tine
    Hansen, Ib
    Tarp, Ulrik
    Andersen, Lis S.
    Svendsen, Anders
    Pedersen, Jens K.
    Lauridsen, Ulrik B.
    Ellingsen, Torkell
    Lindegaard, Hanne
    Podenphant, Jan
    Vestergaard, Aage
    Jurik, Anne Grethe
    Horslev-Petersen, Kim
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2010, 69 (10) : 1789 - 1795
  • [8] Development and validation of a deep-learning model for scoring of radiographic finger joint destruction in rheumatoid arthritis
    Hirano, Toru
    Nishide, Masayuki
    Nonaka, Naoki
    Seita, Jun
    Ebina, Kosuke
    Sakurada, Kazuhiro
    Kumanogoh, Atsushi
    [J]. RHEUMATOLOGY ADVANCES IN PRACTICE, 2019, 3 (02)
  • [9] Development of a scoring model for the Sharp/van der Heijde score using convolutional neural networks and its clinical application
    Honda, Suguru
    Yano, Koichiro
    Tanaka, Eiichi
    Ikari, Katsunori
    Harigai, Masayoshi
    [J]. RHEUMATOLOGY, 2023, 62 (06) : 2272 - 2283
  • [10] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269