Derivation of Some Formulas for Stirling-type Numbers by p-adic Integration

被引:0
作者
Kucukoglu, Irem [1 ]
机构
[1] Alanya Alaaddin Keykubat Univ ALKU, Dept Engn Fundamental Sci, Rafet Kayis Fac Engn, TR-07425 Antalya, Turkiye
来源
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022 | 2024年 / 3094卷
关键词
Generalized factorial coefficients; p-adic integral; Finite sums; First kind Bernoulli numbers; First kind Stirling numbers; Daehee numbers;
D O I
10.1063/5.0210135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, by implementing bosonic p-adic integral to some identities regarding the generalized and the non-central factorial coefficients, we derive some formulas that involves the first kind Stirling numbers and Bernoulli numbers, and also the Daehee numbers. Finally, we bring to an end of the paper by providing some concluding remarks with further observations on the findings of the current paper.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
Charalambides C. A., 2002, Enumerative combinatorics
[2]  
Comtet L., 1974, Advanced combinatorics: the art of finite and infinite expansions
[3]   OPERATIONAL FORMULAS CONNECTED WITH 2 GENERALIZATIONS OF HERMITE POLYNOMIALS [J].
GOULD, HW ;
HOPPER, AT .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (01) :51-+
[4]  
Kim D. S., 2013, Appl. Math. Sci., V7, P5969, DOI DOI 10.12988/AMS.2013.39535
[5]  
Kim T, 2002, RUSS J MATH PHYS, V9, P288
[6]  
Kim T., 2006, Trends Int. Math. Sci. Study, V9, P7
[7]   An invariant p-adic q-integral on Zp [J].
Kim, Taekyun .
APPLIED MATHEMATICS LETTERS, 2008, 21 (02) :105-108
[8]  
KOUTRAS MV, 1994, FIBONACCI QUART, V32, P44
[9]  
Kucukoglu I., PREPRINT
[10]  
Schikhof W.H, 1984, Cambridge Studies in Advanced Mathematics, V4