Quantification of Charge Transport and Mass Deprivation in Solid Electrolyte Interphase for Kinetically-Stable Low-Temperature Lithium-Ion Batteries

被引:9
作者
Dong, Liwei [1 ]
Yan, Hui-Juan [2 ,4 ]
Liu, Qing-Xiang [2 ,4 ]
Liang, Jia-Yan [1 ,2 ]
Yue, Junpei [2 ]
Niu, Min [1 ]
Chen, Xingyu [1 ]
Wang, Enhui [2 ]
Xin, Sen [2 ,4 ]
Zhang, Xinghong [3 ]
Yang, Chunhui [1 ]
Guo, Yu-Guo [2 ,4 ]
机构
[1] Harbin Inst Technol HIT, MOE Engn Res Ctr Electrochem Energy Storage & Carb, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, Beijing Natl Lab Mol Sci BNLMS,Inst Chem, Beijing 100190, Peoples R China
[3] Harbin Inst Technol HIT, Ctr Composite Mat & Struct, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150001, Peoples R China
[4] Univ Chinese Acad Sci UCAS, Sch Chem Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Lithium-ion battery; Low temperature; Solid electrolyte interphase; Transport kinetic; Interfacial stability; LI+; INTERFACE;
D O I
10.1002/anie.202411029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite (Gr)-based lithium-ion batteries with admirable electrochemical performance below -20 degrees C are desired but are hindered by sluggish interfacial charge transport and desolvation process. Li salt dissociation via Li+-solvent interaction enables mobile Li+ liberation and contributes to bulk ion transport, while is contradictory to fast interfacial desolvation. Designing kinetically-stable solid electrolyte interphase (SEI) without compromising strong Li+-solvent interaction is expected to compatibly improve interfacial charge transport and desolvation kinetics. However, the relationship between physicochemical features and temperature-dependent kinetics properties of SEI remains vague. Herein, we propose four key thermodynamics parameters of SEI potentially influencing low-temperature electrochemistry, including electron work function, Li+ transfer barrier, surface energy, and desolvation energy. Based on the above parameters, we further define a novel descriptor, separation factor of SEI (SSEI), to quantitatively depict charge (Li+/e-) transport and solvent deprivation processes at Gr/electrolyte interface. A Li3PO4-based, inorganics-enriched SEI derived by Li difluorophosphate (LiDFP) additive exhibits the highest SSEI (4.89x103) to enable efficient Li+ conduction, e- blocking and rapid desolvation, and as a result, much suppressed Li-metal precipitation, electrolyte decomposition and Gr sheets exfoliation, thus improving low-temperature battery performances. Overall, our work originally provides visualized guides to improve low-temperature reaction kinetics/thermodynamics by constructing desirable SEI chemistry. A novel thermodynamics descriptor, separation factor of solid electrolyte interphase (SSEI) for designing desirable SEI chemistry, is established on the energy of Li+ diffusion (Delta VLi), electron tunneling (Phi e), solvent adsorption (Es), and desolvation processes (Delta Ed), and thus the kinetic stability of charge (Li+/e-) transport and mass (solvent) deprivation through SEI layer at low temperatures could be quantitatively evaluated. image
引用
收藏
页数:9
相关论文
共 35 条
[11]   Mitigating Swelling of the Solid Electrolyte Interphase using an Inorganic Anion Switch for Low-temperature Lithium-ion Batteries [J].
Liang, Jia-Yan ;
Zhang, Yanyan ;
Xin, Sen ;
Tan, Shuang-Jie ;
Meng, Xin-Hai ;
Wang, Wen-Peng ;
Shi, Ji-Lei ;
Wang, Zhen-Bo ;
Wang, Fuyi ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (16)
[12]   An Ultralow-concentration and Moisture-resistant Electrolyte of Lithium Difluoro(oxalato)borate in Carbonate Solvents for Stable Cycling in Practical Lithium-ion Batteries [J].
Liu, Zhishan ;
Hou, Wentao ;
Tian, Haoran ;
Qiu, Qian ;
Ullah, Irfan ;
Qiu, Shen ;
Sun, Wei ;
Yu, Qian ;
Yuan, Jinliang ;
Xia, Lan ;
Wu, Xianyong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (19)
[13]   Effect of Sulfate Electrolyte Additives on LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results [J].
Madec, Lenaic ;
Xia, Jian ;
Petibon, Remi ;
Nelson, Kathlyne J. ;
Sun, Jon-Paul ;
Hill, Ian G. ;
Dahn, Jeff R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51) :29608-29622
[14]   Anion-enrichment interface enables high-voltage anode-free lithium metal batteries [J].
Mao, Minglei ;
Ji, Xiao ;
Wang, Qiyu ;
Lin, Zejing ;
Li, Meiying ;
Liu, Tao ;
Wang, Chengliang ;
Hu, Yong-Sheng ;
Li, Hong ;
Huang, Xuejie ;
Chen, Liquan ;
Suo, Liumin .
NATURE COMMUNICATIONS, 2023, 14 (01)
[15]   Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition [J].
Marker, Katharina ;
Xu, Chao ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (41) :17447-17456
[16]   Fluorinated Solvent Molecule Tuning Enables Fast-Charging and Low-Temperature Lithium-Ion Batteries [J].
Mo, Yanbing ;
Liu, Gaopan ;
Yin, Yue ;
Tao, Mingming ;
Chen, Jiawei ;
Peng, Yu ;
Wang, Yonggang ;
Yang, Yong ;
Wang, Congxiao ;
Dong, Xiaoli ;
Xia, Yongyao .
ADVANCED ENERGY MATERIALS, 2023, 13 (32)
[17]  
Niu M., 2024, ANGEW CHEM INT EDIT, V63
[18]   Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes [J].
Schranzhofer, H ;
Bugajski, J ;
Santner, HJ ;
Korepp, C ;
Möller, KC ;
Besenhard, JO ;
Winter, M ;
Sitte, W .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :391-395
[19]   Building a Flexible and Highly Ionic Conductive Solid Electrolyte Interphase on the Surface of Si@C Anodes by Binary Electrolyte Additives [J].
Song, Linhu ;
Li, Shiyou ;
Wang, Jie ;
Zhu, Junlong ;
Wang, Yinong ;
Cai, Xingpeng ;
Zong, Feifei ;
Wang, Hui ;
Cui, Xiaoling ;
Zhao, Dongni .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (42) :49727-49738
[20]   Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism [J].
Takenaka, Norio ;
Bouibes, Amine ;
Yamada, Yuki ;
Nagaoka, Masataka ;
Yamada, Atsuo .
ADVANCED MATERIALS, 2021, 33 (37)