Quantification of Charge Transport and Mass Deprivation in Solid Electrolyte Interphase for Kinetically-Stable Low-Temperature Lithium-Ion Batteries

被引:9
作者
Dong, Liwei [1 ]
Yan, Hui-Juan [2 ,4 ]
Liu, Qing-Xiang [2 ,4 ]
Liang, Jia-Yan [1 ,2 ]
Yue, Junpei [2 ]
Niu, Min [1 ]
Chen, Xingyu [1 ]
Wang, Enhui [2 ]
Xin, Sen [2 ,4 ]
Zhang, Xinghong [3 ]
Yang, Chunhui [1 ]
Guo, Yu-Guo [2 ,4 ]
机构
[1] Harbin Inst Technol HIT, MOE Engn Res Ctr Electrochem Energy Storage & Carb, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, Beijing Natl Lab Mol Sci BNLMS,Inst Chem, Beijing 100190, Peoples R China
[3] Harbin Inst Technol HIT, Ctr Composite Mat & Struct, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150001, Peoples R China
[4] Univ Chinese Acad Sci UCAS, Sch Chem Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Lithium-ion battery; Low temperature; Solid electrolyte interphase; Transport kinetic; Interfacial stability; LI+; INTERFACE;
D O I
10.1002/anie.202411029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite (Gr)-based lithium-ion batteries with admirable electrochemical performance below -20 degrees C are desired but are hindered by sluggish interfacial charge transport and desolvation process. Li salt dissociation via Li+-solvent interaction enables mobile Li+ liberation and contributes to bulk ion transport, while is contradictory to fast interfacial desolvation. Designing kinetically-stable solid electrolyte interphase (SEI) without compromising strong Li+-solvent interaction is expected to compatibly improve interfacial charge transport and desolvation kinetics. However, the relationship between physicochemical features and temperature-dependent kinetics properties of SEI remains vague. Herein, we propose four key thermodynamics parameters of SEI potentially influencing low-temperature electrochemistry, including electron work function, Li+ transfer barrier, surface energy, and desolvation energy. Based on the above parameters, we further define a novel descriptor, separation factor of SEI (SSEI), to quantitatively depict charge (Li+/e-) transport and solvent deprivation processes at Gr/electrolyte interface. A Li3PO4-based, inorganics-enriched SEI derived by Li difluorophosphate (LiDFP) additive exhibits the highest SSEI (4.89x103) to enable efficient Li+ conduction, e- blocking and rapid desolvation, and as a result, much suppressed Li-metal precipitation, electrolyte decomposition and Gr sheets exfoliation, thus improving low-temperature battery performances. Overall, our work originally provides visualized guides to improve low-temperature reaction kinetics/thermodynamics by constructing desirable SEI chemistry. A novel thermodynamics descriptor, separation factor of solid electrolyte interphase (SSEI) for designing desirable SEI chemistry, is established on the energy of Li+ diffusion (Delta VLi), electron tunneling (Phi e), solvent adsorption (Es), and desolvation processes (Delta Ed), and thus the kinetic stability of charge (Li+/e-) transport and mass (solvent) deprivation through SEI layer at low temperatures could be quantitatively evaluated. image
引用
收藏
页数:9
相关论文
共 35 条
[1]   An Ion-Pumping Interphase on Graphdiyne/Graphite Heterojunction for Fast-Charging Lithium-Ion Batteries [J].
An, Juan ;
Wang, Fan ;
Yang, Jia-Yue ;
Li, Guoxing ;
Li, Yuliang .
CCS CHEMISTRY, 2024, 6 (01) :110-124
[2]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[3]   Bipolar Polymeric Protective Layer for Dendrite-Free and Corrosion-Resistant Lithium Metal Anode in Ethylene Carbonate Electrolyte [J].
Deng, Chenglong ;
Yang, Binbin ;
Liang, Yaohui ;
Zhao, Yi ;
Gui, Boshun ;
Hou, Chuanyu ;
Shang, Yanxin ;
Zhang, Jinxiang ;
Song, Tinglu ;
Gong, Xuzhong ;
Chen, Nan ;
Wu, Feng ;
Chen, Renjie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (17)
[4]   High-Polarity Fluoroalkyl Ether Electrolyte Enables Solvation-Free Li+ Transfer for High-Rate Lithium Metal Batteries [J].
Dong, Liwei ;
Liu, Yuanpeng ;
Wen, Kechun ;
Chen, Dongjiang ;
Rao, Dewei ;
Liu, Jipeng ;
Yuan, Botao ;
Dong, Yunfa ;
Wu, Ze ;
Liang, Yifang ;
Yang, Mengqiu ;
Ma, Jianyi ;
Yang, Chunhui ;
Xia, Chuan ;
Xia, Baoyu ;
Han, Jiecai ;
Wang, Gongming ;
Guo, Zaiping ;
He, Weidong .
ADVANCED SCIENCE, 2022, 9 (05)
[5]   Promoting Rechargeable Batteries Operated at Low Temperature [J].
Dong, Xiaoli ;
Wang, Yong-Gang ;
Xia, Yongyao .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (20) :3883-3894
[6]   A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries [J].
Fu, Chuankai ;
Ma, Yulin ;
Lou, Shuaifeng ;
Cui, Can ;
Xiang, Lizhi ;
Zhao, Wei ;
Zuo, Pengjian ;
Wang, Jiajun ;
Gao, Yunzhi ;
Yin, Geping .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :2066-2073
[7]   Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo [J].
Gavilan-Arriazu, E. M. ;
Mercer, M. P. ;
Pinto, O. A. ;
Oviedo, O. A. ;
Barraco, D. E. ;
Hoster, H. E. ;
Leiva, E. P. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (01)
[8]   Braided Fiber Current Collectors for High-Energy-Density Fiber Lithium-Ion Batteries [J].
Huang, Xinlin ;
Wang, Chuang ;
Li, Chuanfa ;
Liao, Meng ;
Li, Jiaxin ;
Jiang, Haibo ;
Long, Yao ;
Cheng, Xiangran ;
Zhang, Kun ;
Li, Pengzhou ;
Wang, Bingjie ;
Peng, Huisheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (24)
[9]   Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries [J].
Jiang, Li-Li ;
Yan, Chong ;
Yao, Yu-Xing ;
Cai, Wenlong ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (07) :3402-3406
[10]   A lithium superionic conductor for millimeter-thick battery electrode [J].
Li, Yuxiang ;
Song, Subin ;
Kim, Hanseul ;
Nomoto, Kuniharu ;
Kim, Hanvin ;
Sun, Xueying ;
Hori, Satoshi ;
Suzuki, Kota ;
Matsui, Naoki ;
Hirayama, Masaaki ;
Mizoguchi, Teruyasu ;
Saito, Takashi ;
Kamiyama, Takashi ;
Kanno, Ryoji .
SCIENCE, 2023, 381 (6653) :50-53