Carleman estimates for space semi-discrete approximations of one-dimensional stochastic parabolic equation and its applications

被引:0
作者
Wu, Bin [1 ,2 ]
Wang, Ying [1 ]
Wang, Zewen [3 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Ctr Appl Math Jiangsu Prov, Nanjing 210044, Peoples R China
[3] Guangzhou Maritime Univ, Sch Arts & Sci, Guangzhou 510725, Peoples R China
[4] East China Univ Technol, Sch Sci, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
Carleman estimates; inverse random source problem; Cauchy problem; space semi-discrete stochastic parabolic equation; NULL CONTROLLABILITY; ARBITRARY DIMENSION; ELLIPTIC-OPERATORS; INVERSE PROBLEMS;
D O I
10.1088/1361-6420/ad7d2f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study discrete Carleman estimates for space semi-discrete approximations of one-dimensional stochastic parabolic equation. We then apply these Carleman estimates to investigate two inverse problems for the space semi-discrete stochastic parabolic equations, including a discrete inverse random source problem and a discrete Cauchy problem. We firstly establish two Carleman estimates for a one-dimensional semi-discrete stochastic parabolic equation, one for homogeneous boundary and the other for non-homogeneous boundary. Then we apply these two estimates separately to derive two stability results. The first one is the Lipschitz stability for the discrete inverse random source problem. The second one is the H & ouml;lder stability for the discrete Cauchy problem.
引用
收藏
页数:33
相关论文
共 39 条
[1]   An inverse random source problem in quantifying the elastic modulus of nanomaterials [J].
Bao, Gang ;
Xu, Xiang .
INVERSE PROBLEMS, 2013, 29 (01)
[2]   Numerical solution of an inverse medium scattering problem with a stochastic source [J].
Bao, Gang ;
Chow, Shui-Nee ;
Li, Peijun ;
Zhou, Haomin .
INVERSE PROBLEMS, 2010, 26 (07)
[3]   Carleman estimates and controllability of linear stochastic heat equations [J].
Barbu, V ;
Rascanu, A ;
Tessitore, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02) :97-120
[4]   Stability of an inverse problem for the discrete wave equation and convergence results [J].
Baudouin, Lucie ;
Eryedoza, Sylvain ;
Osses, Axel .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06) :1475-1522
[5]   CONVERGENCE OF AN INVERSE PROBLEM FOR A 1-D DISCRETE WAVE EQUATION [J].
Baudouin, Lucie ;
Ervedoza, Sylvain .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) :556-598
[6]   Carleman estimates for time-discrete parabolic equations and applications to controllability* [J].
Boyer, Franck ;
Hernandez-Santamaria, Victor .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
[7]   Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations [J].
Boyer, Franck ;
Le Rousseau, Jerome .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05) :1035-1078
[8]   Uniform controllability properties for space/time-discretized parabolic equations [J].
Boyer, Franck ;
Hubert, Florence ;
Le Rousseau, Jerome .
NUMERISCHE MATHEMATIK, 2011, 118 (04) :601-661
[9]   DISCRETE CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS IN ARBITRARY DIMENSION AND APPLICATIONS [J].
Boyer, Franck ;
Hubert, Florence ;
Le Rousseau, Jerome .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) :5357-5397
[10]   Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations [J].
Boyer, Franck ;
Hubert, Florence ;
Le Rousseau, Jerome .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (03) :240-276