Soliton and breather solutions of a reverse time nonlocal coupled nonlinear Schrödinger equation with four-wave mixing effect

被引:0
作者
Wei, Jiao [1 ]
Wang, Junyan [1 ]
Li, Yihao [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; Soliton solutions; Breather solutions; Nonlocal coupled NLS equation; DYNAMICS;
D O I
10.1016/j.aml.2024.109165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation is a reverse time nonlocal coupled nonlinear Schr & ouml;dinger equation with four-wave mixing effect. The N -fold Darboux transformation is constructed in a compact determinant representation. As an application, the multi-bright-bright soliton, multi-dark-bright soliton and multi-breather solutions are presented. Dynamical behaviors of the degenerate bright-bright solitons, the regular and periodically oscillating dark-bright solitons and the multiple breather interactions are graphically shown.
引用
收藏
页数:7
相关论文
共 10 条
  • [1] Integrable Nonlocal Nonlinear Equations
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) : 7 - 59
  • [2] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [3] Alice-Bob systems, (P)over-cap-(T)over-cap-(C)over-cap symmetry invariant and symmetry breaking soliton solutions
    Lou, S. Y.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [4] Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrodinger equations
    Priya, N. Vishnu
    Senthilvelan, M.
    Lakshmanan, M.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [5] Rogue waves of the nonlocal Davey-Stewartson I equation
    Rao, Jiguang
    Zhang, Yongshuai
    Fokas, Athanassios S.
    He, Jingsong
    [J]. NONLINEARITY, 2018, 31 (09) : 4090 - 4107
  • [6] Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrodinger equation
    Song, Cai-Qin
    Xiao, Dong-Mei
    Zhu, Zuo-Nong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 : 13 - 28
  • [7] Integrable properties of the general coupled nonlinear Schrodinger equations
    Wang, Deng-Shan
    Zhang, Da-Jun
    Yang, Jianke
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [8] Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal PT symmetric nonlinear Schrodinger equation
    Wang, Xin
    Wei, Jiao
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 130
  • [9] Integrable PT-symmetric local and nonlocal vector nonlinear Schrodinger equations: A unified two-parameter model
    Yan, Zhenya
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 47 : 61 - 68
  • [10] General N-solitons and their dynamics in several nonlocal nonlinear Schrodinger equations
    Yang, Jianke
    [J]. PHYSICS LETTERS A, 2019, 383 (04) : 328 - 337