Soliton and breather solutions of a reverse time nonlocal coupled nonlinear Schrödinger equation with four-wave mixing effect

被引:2
作者
Wei, Jiao [1 ]
Wang, Junyan [1 ]
Li, Yihao [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; Soliton solutions; Breather solutions; Nonlocal coupled NLS equation; DYNAMICS;
D O I
10.1016/j.aml.2024.109165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation is a reverse time nonlocal coupled nonlinear Schr & ouml;dinger equation with four-wave mixing effect. The N -fold Darboux transformation is constructed in a compact determinant representation. As an application, the multi-bright-bright soliton, multi-dark-bright soliton and multi-breather solutions are presented. Dynamical behaviors of the degenerate bright-bright solitons, the regular and periodically oscillating dark-bright solitons and the multiple breather interactions are graphically shown.
引用
收藏
页数:7
相关论文
共 10 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]   Alice-Bob systems, (P)over-cap-(T)over-cap-(C)over-cap symmetry invariant and symmetry breaking soliton solutions [J].
Lou, S. Y. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[4]   Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrodinger equations [J].
Priya, N. Vishnu ;
Senthilvelan, M. ;
Lakshmanan, M. .
PHYSICAL REVIEW E, 2014, 89 (06)
[5]   Rogue waves of the nonlocal Davey-Stewartson I equation [J].
Rao, Jiguang ;
Zhang, Yongshuai ;
Fokas, Athanassios S. ;
He, Jingsong .
NONLINEARITY, 2018, 31 (09) :4090-4107
[6]   Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrodinger equation [J].
Song, Cai-Qin ;
Xiao, Dong-Mei ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 :13-28
[7]   Integrable properties of the general coupled nonlinear Schrodinger equations [J].
Wang, Deng-Shan ;
Zhang, Da-Jun ;
Yang, Jianke .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[8]   Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal PT symmetric nonlinear Schrodinger equation [J].
Wang, Xin ;
Wei, Jiao .
APPLIED MATHEMATICS LETTERS, 2022, 130
[9]   Integrable PT-symmetric local and nonlocal vector nonlinear Schrodinger equations: A unified two-parameter model [J].
Yan, Zhenya .
APPLIED MATHEMATICS LETTERS, 2015, 47 :61-68
[10]   General N-solitons and their dynamics in several nonlocal nonlinear Schrodinger equations [J].
Yang, Jianke .
PHYSICS LETTERS A, 2019, 383 (04) :328-337