Revealing fine-scale variability in boreal forest temperatures using a mechanistic microclimate model

被引:2
作者
Kolstela, Joonas [1 ]
Aakala, Tuomas [2 ]
Maclean, Ilya [3 ]
Niittynen, Pekka [4 ,5 ]
Kemppinen, Julia [6 ]
Luoto, Miska [5 ]
Rissanen, Tuuli [5 ]
Tyystjarvi, Vilna [7 ]
Gregow, Hilppa [1 ]
Vapalahti, Olli [8 ,9 ,10 ]
Aalto, Juha [1 ,5 ]
机构
[1] Finnish Meteorol Inst, Weather & Climate Change Impact Res Unit, POB 503, FI-00101 Helsinki, Finland
[2] Univ Eastern Finland, Fac Sci & Forestry, Sch Forest Sci, Box 111, FI-80101 Joensuu, Finland
[3] Univ Exeter, Environm & Sustainabil Inst, Penryn Campus, Penryn TR10 9FE, England
[4] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland
[5] Univ Helsinki, Dept Geosci & Geog, POB 64,Gustaf Hallstromin katu 2a, FI-00014 Helsinki, Finland
[6] Univ Oulu, Geog Res Unit, POB 8000, FI-90014 Oulu, Finland
[7] Finnish Meteorol Inst, Climate Syst Res Unit, POB 503, FI-00101 Helsinki, Finland
[8] Univ Helsinki, Dept Virol, POB 21,Haartmaninkatu 3, Helsinki 00014, Finland
[9] Univ Helsinki, Dept Vet Biosci, Agnes Sjoberginkatu 2,POB 66, Helsinki 00014, Finland
[10] Helsinki Univ Hosp, Virol & Immunol, Stenbackinkatu 9,POB 100, FI-00029 Helsinki, Finland
关键词
Near surface temperature; Thermal heterogeneity; Forest canopy: Forest microclimate; CLIMATE; DENSITY; CANOPY; WATER;
D O I
10.1016/j.agrformet.2024.109995
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Fine-scale temperatures are important drivers of ecosystem functions and biodiversity in boreal forests. However, accounting for large thermal variability has been difficult due to the coarse spatiotemporal resolution of climate data that is commonly applied in studies of biodiversity and forest health. Here, we use a mechanistic microclimate model and geospatial environmental and weather data to reveal microclimate temperature variability in a broad macroclimatic gradient in boreal forest environments. We modelled hourly near-surface temperatures (0.15 m above ground) in May-August 2020 over three focus areas located in hemiboreal, southern boreal and northern boreal forest zone in Finland at a spatial resolution of 10 m x 10 m. A comparison against data from 150 microclimate stations showed reasonable agreement (root mean square error [RMSE] 2.9 degrees C) between the measured and modelled temperatures. RMSE for the three focus areas ranged 2.2 -3.2 degrees C, and the difference was found to be generally smaller under dense canopies compared to open areas. The modelling revealed substantial thermal variability over the landscapes; for example, seasonal near-surface temperature ranges varied 26.5 degrees C - 42.9 degrees C, with the variation being smallest in the hemiboreal landscape with multiple large waterbodies, and largest in southern boreal landscape with large wetland areas. These results demonstrate the great potential of mechanistic microclimate modelling to increase our understanding of the thermal characteristics of various boreal forest environments. Ultimately, high-resolution spatiotemporal microclimate data will permit better understanding of e.g., boreal species distribution under climate and land use change and fine-scale variability in disturbances, including insect pests and forest fires.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Microclimate temperature variations from boreal forests to the tundra
    Aalto, Juha
    Tyystjarvi, Vilna
    Niittynen, Pekka
    Kemppinen, Julia
    Rissanen, Tuuli
    Gregow, Hilppa
    Luoto, Miska
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2022, 323
  • [2] New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate
    Aalto, Juha
    Pirinen, Pentti
    Jylha, Kirsti
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (08) : 3807 - 3823
  • [3] Characterization of spring thaw and its relationship with carbon uptake for different types of southern boreal forest
    Ahmed, Hafiz Faizan
    Helgason, Warren
    Barr, Alan
    Black, Andrew
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2021, 307
  • [4] Surface fire spread potential in trembling aspen during summer in the Boreal Forest Region of Canada
    Alexander, Martin E.
    [J]. FORESTRY CHRONICLE, 2010, 86 (02) : 200 - 212
  • [5] Robust processing of airborne laser scans to plant area density profiles
    Arnqvist, Johan
    Freier, Julia
    Dellwik, Ebba
    [J]. BIOGEOSCIENCES, 2020, 17 (23) : 5939 - 5952
  • [6] NEW EQUATIONS FOR THE DETERMINATION OF SOIL SATURATED HYDRAULIC CONDUCTIVITY USING THE VAN GENUCHTEN MODEL PARAMETERS AND EFFECTIVE POROSITY
    Aschonitis, Vassilis G.
    Antonopoulos, Vassilis Z.
    [J]. IRRIGATION AND DRAINAGE, 2013, 62 (04) : 537 - 542
  • [7] Global estimates of boreal forest carbon stocks and flux
    Bradshaw, Corey J. A.
    Warkentin, Ian G.
    [J]. GLOBAL AND PLANETARY CHANGE, 2015, 128 : 24 - 30
  • [8] Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales
    Bramer, Isobel
    Anderson, Barbara J.
    Bennie, Jonathan
    Bladon, Andrew J.
    De Frenne, Pieter
    Hemming, Deborah
    Hill, Ross A.
    Kearney, Michael R.
    Korner, Christian
    Korstjens, Amanda H.
    Lenoir, Jonathan
    Maclean, Ilya M. D.
    Marsh, Christopher D.
    Morecroft, Michael D.
    Ohlemuller, Ralf
    Slater, Helen D.
    Suggitt, Andrew J.
    Zellweger, Florian
    Gillingham, Phillipa K.
    [J]. NEXT GENERATION BIOMONITORING, PT 1, 2018, 58 : 101 - 161
  • [9] Global buffering of temperatures under forest canopies
    De Frenne, Pieter
    Zellweger, Florian
    Rodriguez-Sanchez, Francisco
    Scheffers, Brett R.
    Hylander, Kristoffer
    Luoto, Miska
    Vellend, Mark
    Verheyen, Kris
    Lenoir, Jonathan
    [J]. NATURE ECOLOGY & EVOLUTION, 2019, 3 (05) : 744 - 749
  • [10] Dickinson R., 1986, BIOSPHERE ATMOSPHERE, DOI DOI 10.5065/D6668B58