Acid-based organosolv lignin extraction from acai berry bagasse

被引:0
作者
Linan, Lamia Zuniga [1 ]
Goncalves, Mellany Paula Xavier [1 ]
Cidreira, Anne Carolyne Mendonca [2 ]
Hatami, Tahmasb [2 ]
Cabral Junior, Aluisio Alves [3 ]
Mei, Lucia Helena Inocentinni [2 ]
机构
[1] Fed Univ Maranhao UFMA, Dept Chem Engn DEEQ, Av Portugueses 1966, BR-65080805 Bacanga, MA, Brazil
[2] Univ Campinas UNICAMP, Dept Mat Engn & Bioproc DEMBio, Dept Engn Mat & Bioproc, Av Albert Einstein 500, BR-13083852 Campinas, SP, Brazil
[3] Fed Inst Educ, Dept Phys, Sci & Technol Maranhao IFMA, Av Getulio Vargas 04, BR-65030005 Sao Luis, MA, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lignin; Acai bagasse; Delignification; Physicochemical characterization; CARBON-FIBERS; LIGNOCELLULOSIC BIOMASS; FRACTIONATION; MANUFACTURE; CELLULOSE; ALKALINE; FEATURES; FILMS;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lignin is the second most prevalent natural material on the planet with applications as dispersants, wound dressings, animal feed, chemicals and fuel. A promising source for lignin extraction is from acai, a palm tree from the Amazonian floodplain. In this study, lignins were extracted, for the first time from acai berry bagasse using an acetic acid-based organosolv approach, and the effects of reaction time and acid concentration on the delignification yield were assessed through a statistical relationship. The lignins were then characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). According to the results, the higher the acid concentration, the shorter the extraction time to obtain the maximum delignification yield. The best condition to isolate pure lignin from the bagasse was 92.5 % (v/v) acetic acid concentration and 10 h of reaction time.
引用
收藏
页数:12
相关论文
共 47 条
[11]   Characterization of Acai (E. oleracea) Fruits and its Processing Residues [J].
Cruz Pessoa, Jose Dalton ;
Arduin, Marcos ;
Martins, Maria Alice ;
Urano de Carvalho, Jose Edmar .
BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2010, 53 (06) :1451-1460
[12]  
EMBRAPA, 2023, About us
[13]   Assessment of key features of lignin from lignocellulosic crops: Stalks and roots of corn, cotton, sugarcane, and tobacco [J].
Esteves Costa, Carina A. ;
Coleman, William ;
Dube, Michael ;
Rodrigues, Alirio E. ;
Rodrigues Pinto, Paula C. .
INDUSTRIAL CROPS AND PRODUCTS, 2016, 92 :136-148
[14]   Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs) [J].
Fang, Wei ;
Yang, Sheng ;
Wang, Xi-Luan ;
Yuan, Tong-Qi ;
Sun, Run-Cang .
GREEN CHEMISTRY, 2017, 19 (08) :1794-1827
[15]   About Making Lignin Great Again-Some Lessons From the Past [J].
Glasser, Wolfgang G. .
FRONTIERS IN CHEMISTRY, 2019, 7
[16]   Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process [J].
Gonzalez Alriols, M. ;
Tejado, A. ;
Blanco, M. ;
Mondragon, I. ;
Labidi, J. .
CHEMICAL ENGINEERING JOURNAL, 2009, 148 (01) :106-114
[17]   Techno-economic comparative assessment of novel lignin depolymerization routes to bio-based aromatics [J].
Gursel, Iris Vural ;
Dijkstra, Jan W. ;
Huijgen, Wouter J. J. ;
Ramirez, Andrea .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (04) :1068-1084
[18]   Qualitative and Quantitative Analysis of Lignin Produced from Beech Wood by Different Conditions of the Organosolv Process [J].
Hansen, B. ;
Kusch, P. ;
Schulze, M. ;
Kamm, B. .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2016, 24 (02) :85-97
[19]  
Hodasova L, 2015, WOOD RES-SLOVAKIA, V60, P973
[20]   Pretreatment of sugarcane bagasse with deep eutectic solvents affect the structure and morphology of lignin [J].
Ji, Qinghua ;
Yu, Xiaojie ;
Wu, Peiwen ;
Yagoub, Abu El-Gasim A. ;
Chen, Li ;
Mustapha, Abdullateef Taiye ;
Zhou, Cunshan .
INDUSTRIAL CROPS AND PRODUCTS, 2021, 173