INFLUENCE OF PRESSURE GRADIENT ON FLAME-VORTEX INTERACTION AND FLAME STABILITY

被引:0
作者
Yalcinkaya, Yagiz [1 ]
Bozkurt, Ogeday E. [1 ]
Gungor, Ayse G. [1 ]
机构
[1] Istanbul Tech Univ, Fac Aeronaut & Astronaut, TR-34469 Istanbul, Turkiye
来源
PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 3B | 2022年
关键词
BLUFF-BODY FLAME; MECHANISMS; CHEMISTRY; BLOWOFF; EXTINCTION; TURBULENCE; MODEL;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study presents numerical investigations of turbulent premixed bluff-body stabilized flame by emphasizing the influence of pressure gradient on flame-vortex interaction and flame stability for lean combustion applications. Large eddy simulations of four different geometrical configurations, diffuser 3 degrees, diffuser 1.5 degrees, nominal, and nozzle that resulted in mild to strong pressure gradients are presented. Numerical investigations allowed determining the effects of geometry-induced pressure gradient on the flame structure, development of the flame-front vorticity and turbulent structures and flame stabilization. It is shown that the pressure gradient plays a key role for the spatial and temporal development of the flame front vorticity and baroclinic torque. The flow deceleration in diffuser geometries suppresses the flame-induced vorticity mechanisms, which in turn lead to large wrinkle forms of the flame and may lead to local extinctions along the flame front. The favorable pressure gradient in the nozzle geometry, on the contrary, increases the baroclinic torque that restrains the development of the shear layer vorticity and hence prevents local extinctions.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Comprehensive Assessment of STGSA Generated Skeletal Mechanism for the Application in Flame-Wall Interaction and Flame-Flow Interaction [J].
Yu, Chunkan ;
Yang, Bin .
JOURNAL OF THERMAL SCIENCE, 2024, 33 (05) :1946-1960
[42]   Extinction and interruption of diffusion flame interacting with a large scale vortex [J].
Komiyama, Masaharu ;
Kawabe, Ryoji ;
Takagi, Toshimi .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 :1099-1106
[43]   Numerical investigation of extinction in a counterflow nonpremixed flame perturbed by a vortex [J].
Oh, CB ;
Lee, CE ;
Park, J .
COMBUSTION AND FLAME, 2004, 138 (03) :225-241
[44]   Oscillatory Burner-Attached Diffusion Flame in a Viscous Vortex [J].
Miklavcic, Milan ;
Wichman, Indrek S. .
COMBUSTION SCIENCE AND TECHNOLOGY, 2018, 190 (12) :2188-2202
[45]   Application of imaging techniques to the study of vortex-flame interactions [J].
Fiechtner, GJ ;
Renard, PH ;
Gord, JR ;
Grinstead, KD ;
Carter, CD ;
Rolon, JC .
OPTICAL DIAGNOSTICS FOR FLUIDS/HEAT/COMBUSTION AND PHOTOMECHANICS FOR SOLIDS, 1999, 3783 :23-34
[46]   Swirling flow influence on stabilization of the flame at low Reynolds number [J].
Matvienko, O. V. ;
Aseeva, A. E. .
25TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2019, 11208
[47]   Gasoline flame behavior at elevated temperature and pressure [J].
Ghiasi, Golnoush ;
Ahmed, Irufan ;
Swaminathan, Nedunchezhian .
FUEL, 2019, 238 :248-256
[48]   Numerical optimization of flame stability in a swirl combustion chamber with helical tapes [J].
Sayyar, Ali ;
Davani, Ashkan .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 22
[49]   Fire safety in space - Investigating flame spread interaction over wires [J].
Citerne, Jean-Marie ;
Dutilleul, Hugo ;
Kizawa, Koki ;
Nagachi, Masashi ;
Fujita, Osamu ;
Kikuchi, Masao ;
Jomaas, Grunde ;
Rouvreau, Sebastien ;
Torero, Jose L. ;
Legros, Guillaume .
ACTA ASTRONAUTICA, 2016, 126 :500-509
[50]   The influence of cooling air jets on the premixed flame structure and stability of air-cooled bluff-body flameholder [J].
Chen, Yuqian ;
Fan, Yuxin ;
Han, Qixiang ;
Shan, Xu ;
Bi, Yaning ;
Deng, Yu .
FUEL, 2022, 310