Matching Patients to Accelerate Clinical Trials (MPACT): Enabling Technology for Oncology Clinical Trial Workflow

被引:0
作者
Do, Nhan V. [1 ,3 ]
Elbers, Danne C. [1 ,2 ]
Fillmore, Nathanael R. [1 ,2 ]
Ajjarapu, Samuel [1 ]
Bergstrom, Steven J. [1 ]
Bihn, John [1 ]
Corrigan, June K. [1 ]
Dhond, Rupali [1 ,3 ]
Dipietro, Svitlana [1 ]
Dolgin, Arkadiy [1 ]
Feldman, Theodore C. [1 ]
Goryachev, Sergey D. [1 ]
Huhmann, Linden B. [1 ]
La, Jennifer [1 ]
Marcantonio, Paul A. [1 ]
McGrath, Kyle M. [1 ]
Miller, Stephen J. [1 ]
Nguyen, Vinh Q. [1 ]
Schneeloch, George R. [1 ]
Sung, Feng-Chi [1 ]
Swinnerton, Kaitlin N. [1 ]
Tarren, Amelia H. [1 ]
Tosi, Hannah M. [1 ]
Valley, Danielle [1 ]
Vo, Austin D. [1 ]
Yildirim, Cenk [1 ]
Zheng, Chunlei [1 ]
Zwolinski, Robert [1 ]
Sarosy, Gisele A. [4 ]
Loose, David [4 ]
Shannon, Colleen [1 ]
Brophy, Mary T. [1 ,3 ]
机构
[1] VA Boston Healthcare Syst, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA USA
[3] Boston Univ, Sch Med, Boston, MA 02118 USA
[4] NCI, Bethesda, MD USA
来源
MEDINFO 2023 - THE FUTURE IS ACCESSIBLE | 2024年 / 310卷
关键词
Clinical trials; workflow; NLP;
D O I
10.3233/SHTI231132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical trial enrollment is impeded by the significant time burden placed on research coordinators screening eligible patients. With 50,000 new cancer cases every year, the Veterans Health Administration (VHA) has made increased access for Veterans to high-quality clinical trials a priority. To aid in this effort, we worked with research coordinators to build the MPACT (Matching Patients to Accelerate Clinical Trials) platform with a goal of improving efficiency in the screening process. MPACT supports both a trial prescreening workflow and a screening workflow, employing Natural Language Processing and Data Science methods to produce reliable phenotypes of trial eligibility criteria. MPACT also has a functionality to track a patient's eligibility status over time. Qualitative feedback has been promising with users reporting a reduction in time spent on identifying eligible patients.
引用
收藏
页码:1086 / 1090
页数:5
相关论文
共 6 条
[1]   Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients [J].
Alexander, Marliese ;
Solomon, Benjamin ;
Ball, David L. ;
Sheerin, Mimi ;
Dankwa-Mullan, Irene ;
Preininger, Anita M. ;
Jackson, Gretchen Purcell ;
Herath, Dishan M. .
JAMIA OPEN, 2020, 3 (02) :209-215
[2]   Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center [J].
Beck, J. Thaddeus ;
Rammage, Melissa ;
Jackson, Gretchen P. ;
Preininger, Anita M. ;
Dankwa-Mullan, Irene ;
Roebuck, M. Christopher ;
Torres, Adam ;
Holtzen, Helen ;
Coverdill, Sadie E. ;
Williamson, M. Paul ;
Chau, Quincy ;
Rhee, Kyu ;
Vinegra, Michael .
JCO CLINICAL CANCER INFORMATICS, 2020, 4 :50-59
[3]   Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study [J].
Haddad, Tufia ;
Helgeson, Jane M. ;
Pomerleau, Katharine E. ;
Preininger, Anita M. ;
Roebuck, M. Christopher ;
Dankwa-Mullan, Irene ;
Jackson, Gretchen Purcell ;
Goetz, Matthew P. .
JMIR MEDICAL INFORMATICS, 2021, 9 (03)
[4]   The National Cancer Institute and Department of Veterans Affairs Interagency Group to Accelerate Trials Enrollment (NAVIGATE): A federal collaboration to improve cancer care [J].
Schiller, Sara J. ;
Shannon, Colleen ;
Brophy, Mary T. ;
Denicoff, Andrea M. ;
Good, Marjorie J. ;
Prindiville, Sheila A. ;
Huang, Grant D. .
SEMINARS IN ONCOLOGY, 2019, 46 (4-5) :308-313
[5]   Application of Information Technology to Clinical Trial Evaluation and Enrollment A Review [J].
von Itzstein, Mitchell S. ;
Hullings, Melanie ;
Mayo, Helen ;
Beg, M. Shaalan ;
Williams, Erin L. ;
Gerber, David E. .
JAMA ONCOLOGY, 2021, 7 (10) :1559-1566
[6]  
Zullig LL, Mil Med.