Machine learning-driven Ag/SiO 2 /Cu/rice leaf SERS platform for intelligent identification of pharmacodynamic substances

被引:5
作者
Li, Zelong [1 ]
Han, Xue [2 ]
Fu, Lan [3 ]
Shi, Guochao [1 ]
Xu, Shiqi [1 ]
Wang, Mingli [4 ]
Yuan, Wenzhi [1 ]
Zhou, Wenying [1 ]
Cui, Jiahao [1 ]
机构
[1] Chengde Med Univ, Hebei Int Res Ctr Med Engn, Chengde 067000, Hebei, Peoples R China
[2] Chengde Med Univ, Affiliated Hosp, Dept Neurol, Chengde 067000, Hebei, Peoples R China
[3] Qual & Technol Supervis Test Inst Chengde, Chengde 067000, Hebei, Peoples R China
[4] Yanshan Univ, Sch Sci, State Key Lab Metastable Mat Sci & Technol, Key Lab Microstruct Mat Phys Hebei Prov, Qinhuangdao 066004, Peoples R China
关键词
SERS; Machine learning; Micropapillary structure; Pharmaceutical substances; ENHANCED RAMAN-SCATTERING; SUBSTRATE; NANOPARTICLES; SPECTROSCOPY; NANOARRAYS; LSPR;
D O I
10.1016/j.microc.2024.110459
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The combination of surface-enhanced Raman scattering (SERS) and machine learning algorithm provides an effective means for the identification of pharmacodynamic substances. This paper reported a biomimetic synthesis route of Ag-30/SiO 2 -4/Cu-20/rice leaf (Ag-30/SiO 2 -4/Cu-20/RL) SERS platform with multiple synergistic electromagnetic enhanced performance. The localized surface plasmon resonance (LSPR) effect was strengthened as the SiO 2 nanolayer generated between Ag and Cu. This SERS platform demonstrated high sensitivity, with a low limit of detection (LOD) of 1 x 10 -10 M for 4-Aminophenylthiophenol (4-ATP) and an enhancement factor (EF) of 3.86 x 10 6 . More importantly, the principal component analysis (PCA) was adopted to analyze the SERS data of three different Traditional Chinese medicine (TCM) pharmacodynamic substances (Orientin, Atractylenolide III and Prim-o-glucosylcimifugin). The K-nearest neighbor (KNN) and Na & iuml;ve Bayes (NB) achieved classification accuracy of 0.9474 and 0.9649, respectively. The platform provides guidance for the accurate identification of TCM pharmacodynamic substances.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS)
    Ai, Yu-jie
    Liang, Pei
    Wu, Yan-xiong
    Dong, Qian-min
    Li, Jing-bin
    Bai, Yang
    Xu, Bi-Jie
    Yu, Zhi
    Ni, Dejiang
    [J]. FOOD CHEMISTRY, 2018, 241 : 427 - 433
  • [2] Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques
    Beeram, Reshma
    Vepa, Kameswara Rao
    Soma, Venugopal Rao
    [J]. BIOSENSORS-BASEL, 2023, 13 (03):
  • [3] SERS and machine learning based effective feature extraction for detection and identification of amphetamine analogs
    Cai, Jing
    Wu, Yulun
    Bai, Haohao
    He, Yingsheng
    Qin, Yazhou
    [J]. HELIYON, 2023, 9 (12)
  • [4] Biological SERS-active sensor platform based on flexible silk fibroin film and gold nanoislands
    Choi, Ji Hyeon
    Choi, Munsik
    Ho, Tien Son
    Kim, Soogeun
    Choi, Samjin
    Choi, Seung Ho
    Byun, Kyung Min
    [J]. OPTICS EXPRESS, 2022, 30 (05): : 7782 - 7792
  • [5] Dual modal plasmonic substrates based on a convective self-assembly technique for enhancement in SERS and LSPR detection
    Choi, Munsik
    Kang, Taeyoung
    Choi, Seung Ho
    Byun, Kyung Min
    [J]. OPTICS EXPRESS, 2021, 29 (04) : 6179 - 6187
  • [6] Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques
    Ciloglu, Fatma Uysal
    Saridag, Ayse Mine
    Kilic, Ibrahim Halil
    Tokmakci, Mahmut
    Kahraman, Mehmet
    Aydin, Omer
    [J]. ANALYST, 2020, 145 (23) : 7559 - 7570
  • [7] Highly sensitive fiber optic enhanced Raman scattering sensor
    Du, Wei
    Wei, Shengnan
    Li, Na
    Hao, Zongshuo
    Li, Yue
    Wang, Mingli
    [J]. OPTICS AND LASER TECHNOLOGY, 2024, 168
  • [8] Colloidal nanomaterials for water quality improvement and monitoring
    Estrada, Ana C.
    Daniel-da-Silva, Ana L.
    Leal, Catia
    Monteiro, Catia
    Lopes, Claudia B.
    Nogueira, Helena I. S.
    Lopes, Isabel
    Martins, Maria J.
    Martins, Natercia C. T.
    Goncalves, Nuno P. F.
    Fateixa, Sara
    Trindade, Tito
    [J]. FRONTIERS IN CHEMISTRY, 2022, 10
  • [9] Machine Learning-Driven 3D Plasmonic Cavity-in-Cavity Surface-Enhanced Raman Scattering Platform with Triple Synergistic Enhancement Toward Label-Free Detection of Antibiotics in Milk
    Fang, Guoqiang
    Lin, Xiang
    Liang, Xiu
    Wu, Jinlei
    Xu, Wen
    Hasi, Wuliji
    Dong, Bin
    [J]. SMALL, 2022, 18 (45)
  • [10] FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection
    Gomez-Cruz, Juan
    Bdour, Yazan
    Stamplecoskie, Kevin
    Escobedo, Carlos
    [J]. BIOSENSORS-BASEL, 2022, 12 (02):