Polynomial slow-fast systems on the Poincaré-Lyapunov sphere
被引:0
作者:
Perez, Otavio Henrique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
Perez, Otavio Henrique
[1
]
da Silva, Paulo Ricardo
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ UNESP, Inst Biosci Humanities & Exact Sci, Rua C Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
da Silva, Paulo Ricardo
[2
]
机构:
[1] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Inst Biosci Humanities & Exact Sci, Rua C Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
来源:
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES
|
2024年
/
18卷
/
02期
The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincar & eacute;-Lyapunov sphere for slow-fast systems defined in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{n}$$\end{document}. For the planar case, we prove a global version of the Fenichel Theorem, which assures the persistence of invariant manifolds in the whole Poincar & eacute;-Lyapunov disk. We also discuss the occurrence of non normally hyperbolic points at infinity, namely: fold, transcritical and pitchfork singularities.