Polynomial slow-fast systems on the Poincaré-Lyapunov sphere

被引:0
作者
Perez, Otavio Henrique [1 ]
da Silva, Paulo Ricardo [2 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Inst Biosci Humanities & Exact Sci, Rua C Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2024年 / 18卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Geometric singular perturbation theory; Invariant manifolds; Poincar & eacute; compactification; -Lyapunov compactification; Polynomial vector fields; SINGULAR PERTURBATION-THEORY; LIENARD EQUATIONS; CLASSIFICATION;
D O I
10.1007/s40863-024-00441-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincar & eacute;-Lyapunov sphere for slow-fast systems defined in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{n}$$\end{document}. For the planar case, we prove a global version of the Fenichel Theorem, which assures the persistence of invariant manifolds in the whole Poincar & eacute;-Lyapunov disk. We also discuss the occurrence of non normally hyperbolic points at infinity, namely: fold, transcritical and pitchfork singularities.
引用
收藏
页码:1527 / 1552
页数:26
相关论文
共 25 条