New Measure for Network Controllability Robustness Based on Controllable Subspace

被引:0
作者
Liu, Yanwen [1 ]
Ding, Jie [1 ]
Li, Xiang [2 ]
机构
[1] Fudan Univ, Sch Informat Sci & Engn, Dept Elect Engn, Adapt Networks & Control Lab, Shanghai 200433, Peoples R China
[2] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Inst Complex Networks & Intelligent Syst, Shanghai 201210, Peoples R China
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Complex networks; controllability robustness; controllable subspace; generic dimension; COMMUNITY STRUCTURE; COMPLEX;
D O I
10.1109/ISCAS58744.2024.10558485
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a new criteria to measure network controllability robustness based on generic dimension of controllable subspace given a network. Generic dimension curve and controllabillity robustness index are introduced to show network controllability robustness from different aspects. 12 different attack methods are carried out for six network models. It is found that the multiloop structure is useful to maintain network robustness under attacks. Moreover, the networks with single backbone structure are fragile under attacks. Besides, both the increase and protection of driver nodes can enhance the controllability robustness of networks.
引用
收藏
页数:5
相关论文
共 26 条
  • [1] Barabasi AL, 2016, NETWORK SCIENCE, P1
  • [2] A Comparative Study on Controllability Robustness of Complex Networks
    Chen, Guanrong
    Lou, Yang
    Wang, Lin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (05) : 828 - 832
  • [3] The worldwide air transportation network:: Anomalous centrality, community structure, and cities' global roles
    Guimerá, R
    Mossa, S
    Turtschi, A
    Amaral, LAN
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (22) : 7794 - 7799
  • [4] Constrained target controllability of complex networks
    Guo, Wei-Feng
    Zhang, Shao-Wu
    Wei, Ze-Gang
    Zeng, Tao
    Liu, Fei
    Zhang, Jingsong
    Wu, Fang-Xiang
    Chen, Luonan
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [6] Kalman RE., 1960, 1 INT IFAC C AUT REM, V1, P491, DOI [10.1109/TAC.1959.1104873.110, 10.1016/S1474-6670(17)70094-8, DOI 10.1016/S1474-6670(17)70094-8]
  • [7] STRUCTURAL CONTROLLABILITY
    LIN, CT
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (03) : 201 - 208
  • [8] Liu Y. Y.-Y., 2012, B AM PHYS SOC, V7, P1
  • [9] Controllability of complex networks
    Liu, Yang-Yu
    Slotine, Jean-Jacques
    Barabasi, Albert-Laszlo
    [J]. NATURE, 2011, 473 (7346) : 167 - 173
  • [10] Controllability Robustness of Henneberg-Growth Complex Networks
    Lou, Yang
    Yang, Dong
    Wang, Lin
    Tang, Chang-Bing
    Chen, Guanrong
    [J]. IEEE ACCESS, 2022, 10 : 5103 - 5114