Probabilistic Type 2 Poly-Bernoulli Polynomials

被引:4
作者
Lee, Si Hyeon [1 ]
Chen, Li [2 ]
Kim, Wonjoo [3 ]
机构
[1] Kwangwoon Univ, Seoul 139701, South Korea
[2] Xian Univ Finance & Econ, Sch Math, Xian 710100, Peoples R China
[3] Kyung Hee Univ, Dept Appl Math, Seoul, South Korea
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Bernoulli polynomials; Stirling numbers; Probabilistic type 2 poly- Bernoulli polynomials; Probabilistic unipoly-Bernoulli polynomials; DEGENERATE STIRLING NUMBERS;
D O I
10.29020/nybg.ejpam.v17i3.5275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this article is to introduce the probabilistic type 2 poly-Bernoulli polynomials under the condition that Y is a random variable. This means that we will consider the probabilistic extension of the type 2 poly-Bernoulli polynomials and study to obtain some new results. Furthermore, we also define the probabilistic unipoly-Bernoulli polynomials and numbers attached to p, and investigate their interesting basic properties. Based on these new definition, we derive some meaningful formulae of probabilistic type 2 poly-Bernoulli polynomials and probabilistic unipoly-Bernoulli polynomials and numbers attached to p.
引用
收藏
页码:2336 / 2348
页数:13
相关论文
共 32 条
[1]  
[Anonymous], 1979, Utilitas Math.
[2]  
Carlitz L, 1981, Utilitas Math, V19, P81
[3]   Probabilistic type 2 Bernoulli and Euler polynomials [J].
Chen, Li ;
Dolgy, Dmitry, V ;
Kim, Taekyun ;
Kim, Dae San .
AIMS MATHEMATICS, 2024, 9 (06) :14312-14324
[4]  
Eastham M.S.P., 1964, Proc. Glasgow Math. Assoc., V6, P169
[5]  
Kaneko M., 1997, J THEOR NOMBR BORDX, V9, P199
[6]   A Note on a New Type of Degenerate Bernoulli Numbers [J].
Kim, D. S. ;
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (02) :227-235
[7]   A Note on Polyexponential and Unipoly Functions [J].
Kim, D. S. ;
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2019, 26 (01) :40-49
[8]   Generalization of Spivey's Recurrence Relation [J].
Kim, T. ;
Kim, D. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (02) :218-226
[9]   Probabilistic Bernoulli and Euler Polynomials [J].
Kim, T. ;
Kim, D. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (01) :94-105
[10]   Probabilistic Degenerate Bell Polynomials Associated with Random Variables [J].
Kim, T. ;
Kim, D. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (04) :528-542