CO2 transformed into highly active catalysts for the oxygen reduction reaction via low-temperature molten salt electrolysis

被引:0
|
作者
Remmel, Anna-Liis [1 ]
Ratso, Sander [1 ,3 ]
Liivand, Kerli [1 ]
Danilson, Mati [2 ]
Kaare, Katlin [1 ]
Mikli, Valdek [2 ]
Kruusenberg, Ivar [1 ]
机构
[1] NICPB, Akad Tee 23, EE-12618 Tallinn, Estonia
[2] Tallinn Univ Technol, Dept Mat & Environm Technol, Ehitajate tee 5, EE-19086 Tallinn, Estonia
[3] Univ Calif Berkeley, Nucl Engn Dept, 2521 Hearst Ave, Berkeley, CA 94709 USA
关键词
CARBON; IRON;
D O I
10.1016/j.elecom.2024.107781
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The implementation of a technology capable of capturing and converting CO2 into valuable products is one of the key requirements for limiting the effects of our carbon-intensive industries. At the same time, future CO2 emissions need to be reduced to combat climate change, meaning that new devices capable of storing and converting energy without CO2 emissions have to be adopted widely. In this work, we demonstrate catalysts made directly from CO2 for fuel cells and zinc-air K2CO3 and a new mixture containing 0.1 mol of LiOH in addition. The effects of the electrolyte towards the final carbon product and its electrocatalytic activity are analysed using the rotating disk electrode method, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The porosity of the materials is described by N2 adsorption and the best performing catalyst is compared to the activity of a commercial 20 wt% PtRu/C material in a zinc-air battery.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Low-temperature graphitization of lignin via Co-assisted electrolysis in molten salt
    Shijie Li
    WeiLi Song
    Xue Han
    Qingqing Cui
    Yanli Zhu
    Shuqiang Jiao
    Green Energy & Environment, 2024, 9 (09) : 1449 - 1458
  • [2] Low-temperature graphitization of lignin via Co-assisted electrolysis in molten salt
    Li, Shijie
    Song, Wei-Li
    Han, Xue
    Cui, Qingqing
    Zhu, Yan-li
    Jiao, Shuqiang
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (09) : 1449 - 1458
  • [3] An industrial perspective on catalysts for low-temperature CO2 electrolysis
    Richard I. Masel
    Zengcai Liu
    Hongzhou Yang
    Jerry J. Kaczur
    Daniel Carrillo
    Shaoxuan Ren
    Danielle Salvatore
    Curtis P. Berlinguette
    Nature Nanotechnology, 2021, 16 : 118 - 128
  • [4] An industrial perspective on catalysts for low-temperature CO2 electrolysis
    Masel, Richard I.
    Liu, Zengcai
    Yang, Hongzhou
    Kaczur, Jerry J.
    Carrillo, Daniel
    Ren, Shaoxuan
    Salvatore, Danielle
    Berlinguette, Curtis P.
    NATURE NANOTECHNOLOGY, 2021, 16 (02) : 118 - 128
  • [5] Low-Temperature Molten Salt Electrochemical CO2 Upcycling for Advanced Energy Materials
    Thapaliya, Bishnu P.
    Ivanov, Alexander S.
    Chao, Hsin-Yun
    Lamm, Meghan
    Meyer, Harry M.
    Chi, Miaofang
    Sun, Xiao-Guang
    Aytug, Tolga
    Dai, Sheng
    Mahurin, Shannon M.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (02) : 2251 - 2262
  • [6] Synthesis of nanostructured graphite via molten salt reduction of CO2 and SO2 at a relatively low temperature
    Chen, Zhigang
    Gu, Yuxing
    Hu, Liangyou
    Xiao, Wei
    Mao, Xuhui
    Zhu, Hua
    Wang, Dihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (39) : 20603 - 20607
  • [7] Ionomer and Membrane Designs for Low-temperature CO2 and CO Electrolysis
    Deng, Huiying
    Chen, Zhuo
    Wang, Yuhang
    CHEMSUSCHEM, 2025, 18 (04)
  • [8] Highly active CuO/OMS-2 catalysts for low-temperature CO oxidation
    Liu, Xue-Song
    Jin, Zhu-Nian
    Lu, Ji-Qing
    Wang, Xiao-Xia
    Luo, Meng-Fei
    CHEMICAL ENGINEERING JOURNAL, 2010, 162 (01) : 151 - 157
  • [9] Impurity Behavior in Aluminum Extraction by Low-Temperature Molten Salt Electrolysis
    Huan, Shuxing
    Wang, Yaowu
    Liu, Kejia
    Peng, Jianping
    Di, Yuezhong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [10] Carbon corrosion in low-temperature CO2 electrolysis systems
    Ferrell, Jack R.
    Rasmussen, Mathew
    McNeary, W. Wilson
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (15): : 3266 - 3278