Miscibility of binary Bose-Einstein condensates with p-wave interaction

被引:1
|
作者
Deng, Min [1 ,2 ,3 ,4 ]
Xue, Ming [1 ,2 ]
Pang, Jinghan [1 ,2 ]
Luo, Hui [3 ,4 ]
Wang, Zhiguo [3 ,4 ]
Li, Jinbin [1 ,2 ]
Yang, Dayou [5 ,6 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Phys, Nanjing 211106, Peoples R China
[2] MIIT, Key Lab Aerosp Informat Mat & Phys, Nanjing 211106, Peoples R China
[3] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
[4] Natl Univ Def Technol, Interdisciplinary Ctr Quantum Informat, Changsha 410073, Peoples R China
[5] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[6] Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
GROUND-STATE; GAS; EXCITATIONS; SEPARATION; DYNAMICS;
D O I
10.1103/PhysRevA.109.043324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the ground -state phase diagram of a binary mixture of Bose-Einstein condensates (BECs) with competing interspecies sand p -wave interactions. Exploiting a pseudopotential model for the l = 1 partial wave, we derive an extended Gross-Pitaevskii (GP) equation for the BEC mixture that incorporates both sand p -wave interactions. Based on it, we study the miscible -immiscible transition of a binary BEC mixture in the presence of interspecies p -wave interaction, by combining numerical solution of the GP equation and Gaussian variational analysis. Our paper uncovers a dual effect-to either enhance or reduce miscibility-of positive interspecies p -wave interaction, which can be precisely controlled by adjusting relevant experimental parameters. By completely characterizing the miscibility phase diagram, we establish a promising avenue towards experimental control of the miscibility of binary BEC mixtures via high partial -wave interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Time-of-flight expansion of binary Bose-Einstein condensates at finite temperature
    Lee, K. L.
    Jorgensen, N. B.
    Wacker, L. J.
    Skou, M. G.
    Skalmstang, K. T.
    Arlt, J. J.
    Proukakis, N. P.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [22] Moving binary Bose-Einstein condensates in a weak random potential
    Boudjemaa, Abdelaali
    PHYSICS LETTERS A, 2022, 424
  • [23] Negative radiation pressure in Bose-Einstein condensates
    Ciurla, Dominik
    Forgacs, Peter
    Lukacs, Arpad
    Romanczukiewicz, Tomasz
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [24] Bose-Einstein condensates with spatially inhomogeneous interaction and bright solitons
    Shin, H. J.
    Radha, R.
    Kumar, V. Ramesh
    PHYSICS LETTERS A, 2011, 375 (25) : 2519 - 2523
  • [25] Time-varying Bose-Einstein condensates
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [26] Quantum engines with interacting Bose-Einstein condensates
    Estrada, Julian Amette
    Mayo, Franco
    Roncaglia, Augusto J.
    Mininni, Pablo D.
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [27] Are Quasiparticles and Phonons Identical in Bose-Einstein Condensates?
    Tsutsui, Kazumasa
    Kato, Yusuke
    Kita, Takafumi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (12)
  • [28] Interaction effects on atomic laboratory trapped Bose-Einstein condensates
    Briscese, Fabio
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (08)
  • [29] Collisionally Inhomogeneous Bose-Einstein Condensates with a Linear Interaction Gradient
    Di Carli, Andrea
    Henderson, Grant
    Flannigan, Stuart
    Colquhoun, Craig D.
    Mitchell, Matthew
    Oppo, Gian-Luca
    Daley, Andrew J.
    Kuhr, Stefan
    Haller, Elmar
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [30] Sound waves and modulational instabilities on continuous-wave solutions in spinor Bose-Einstein condensates
    Tasgal, Richard S.
    Band, Y. B.
    PHYSICAL REVIEW A, 2015, 91 (01):