Deep Learning-Based Automated Cashier System for Bakeries

被引:0
|
作者
Nam Van Hai Phan [1 ]
Tha Thanh Le [1 ]
Tuan Phu Phan [1 ]
Thuy Thu Le [1 ]
Phuong-Nam Tran [1 ]
Nhat Truong Pham [2 ]
Duc Ngoc Minh Dang [3 ]
机构
[1] FPT Univ, Dept Informat Technol Specializat, Ho Chi Minh City, Vietnam
[2] Sungkyunkwan Univ, Dept Integrat Biotechnol, Suwon, South Korea
[3] FPT Univ, Dept Comp Fundamental, Ho Chi Minh City, Vietnam
关键词
Computing Vision; Object detection; Automated Cashier; YOLO; Faster R-CNN;
D O I
10.1145/3654522.3654538
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of image recognition in the bakery business has paved the way for automatic payment systems, a significant advancement in the field of computer vision. This article delves into an exploration of advanced image recognition models to meticulously assess their effectiveness, speed, and suitability for seamless integration into specialized automatic payment systems tailored for bakeries. Specifically, YOLOX, YOLOv8, Faster R-CNN, and RetinaNet, each with different versions and backbones, are considered for evaluation based on their speed and performance. Notably, this study introduces a streamlined process for rapidly creating custom datasets for object detection research and evaluates models across these datasets. The insights and analyses derived from this study provide valuable perspectives for optimizing processes and enhancing the overall performance of automatic payment systems within bakeries.
引用
收藏
页码:94 / 100
页数:7
相关论文
共 50 条
  • [21] Deep Transfer Learning-Based Automated Identification of Bird Song
    Das, Nabanita
    Padhy, Neelamadhab
    Dey, Nilanjan
    Bhattacharya, Sudipta
    Tavares, Joao Manuel R. S.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (04): : 33 - 45
  • [22] Testing Deep Learning-based Visual Perception for Automated Driving
    Abrecht, Stephanie
    Gauerhof, Lydia
    Gladisch, Christoph
    Groh, Konrad
    Heinzemann, Christian
    Woehrle, Matthias
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2021, 5 (04)
  • [23] Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
    van der Kamp, Ananda
    de Bel, Thomas
    van Alst, Ludo
    Rutgers, Jikke
    van den Heuvel-Eibrink, Marry M.
    Mavinkurve-Groothuis, Annelies M. C.
    van der Laak, Jeroen
    de Krijger, Ronald R.
    CANCERS, 2023, 15 (09)
  • [24] Deep learning-based, fully automated, pediatric brain segmentation
    Kim, Min-Jee
    Hong, Eunpyeong
    Yum, Mi-Sun
    Lee, Yun-Jeong
    Kim, Jinyoung
    Ko, Tae-Sung
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [25] Fully Automated Deep Learning-based Sex Recognition in Pigs
    Boeken, Bjoern
    Dennemann, Ralf
    Keselj, Andreas
    FLEISCHWIRTSCHAFT, 2021, 101 (08): : 90 - 97
  • [26] Automated deep learning-based wide-band receiver
    Azari, Bahar
    Cheng, Hai
    Soltani, Nasim
    Li, Haoqing
    Li, Yanyu
    Belgiovine, Mauro
    Imbiriba, Tales
    D'Oro, Salvatore
    Melodia, Tommaso
    Wang, Yanzhi
    Closas, Pau
    Chowdhury, Kaushik
    Erdogmus, Deniz
    COMPUTER NETWORKS, 2022, 218
  • [27] Deep learning-based approach for automated assessment of PTEN status
    Jamaspishvili, Tamara
    Harmon, Stephanie
    Patel, Palak
    Sanford, Thomas
    Caven, Isabelle
    Iseman, Rachael
    Mehralivand, Sherif
    Choyke, Peter L.
    Berman, David Monty
    Turkbey, Baris
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (06)
  • [28] Deep Learning-Based Automated Lip-Reading: A Survey
    Fenghour, Souheil
    Chen, Daqing
    Guo, Kun
    Li, Bo
    Xiao, Perry
    IEEE ACCESS, 2021, 9 (09): : 121184 - 121205
  • [29] Deep Learning-Based Automated Intracranial Hemorrhage Detection and Notification
    Zahneisen, Benjamin
    Straka, Matus
    Bammer, Shalini
    Albers, Greg
    Bammer, Roland
    STROKE, 2020, 51
  • [30] Pulmonary contusion: automated deep learning-based quantitative visualization
    Nathan Sarkar
    Lei Zhang
    Peter Campbell
    Yuanyuan Liang
    Guang Li
    Mustafa Khedr
    Udit Khetan
    David Dreizin
    Emergency Radiology, 2023, 30 : 435 - 441