THE UNIMODALITY OF THE r 3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert xiaojian [1 ]
Shen, Erin yiying [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
关键词
Regular overpartition; r l-crank; monotonicity; unimodality; NUMBER;
D O I
10.4134/BKMS.b230269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An l - regular overpartition of n is an overpartition of n with no parts divisible by l. Recently, the authors introduced a partition statistic called r l -crank of l - regular overpartitions. Let M r l ( m, n ) denote the number of l - regular overpartitions of n with r l -crank m. In this paper, we investigate the monotonicity property and the unimodality of M r 3 ( m, n ). We prove that M r 3 ( m, n ) >= M r 3 ( m, n - 1) for any integers m and n >= 6 and the sequence { M r 3 ( m, n ) } | m |<= n is unimodal for all n >= 14.
引用
收藏
页码:621 / 635
页数:15
相关论文
共 42 条
  • [1] EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS
    Hao, Robert X. J.
    Shen, Erin Y. Y.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2023, 60 (2-3) : 123 - 132
  • [2] On the minimum bisection of random 3-regular graphs
    Lichev, Lyuben
    Mitsche, Dieter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02)
  • [3] Topological Properties of a 3-Regular Small World Network
    Jia, Huanshen
    Hu, Guona
    Zhao, Haixing
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [4] Geometry of the minimal spanning tree of a random 3-regular graph
    Addario-Berry, Louigi
    Sen, Sanchayan
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (3-4) : 553 - 620
  • [5] Congruences for 9-regular partitions modulo 3
    Cui, Su-Ping
    Gu, Nancy S. S.
    RAMANUJAN JOURNAL, 2015, 38 (03) : 503 - 512
  • [6] Arithmetic of the 7-regular bipartition function modulo 3
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2015, 37 (03) : 469 - 478
  • [7] Congruences for (3,11)-regular bipartitions modulo 11
    Dou, Donna Q. J.
    RAMANUJAN JOURNAL, 2016, 40 (03) : 535 - 540
  • [8] SEMICLASSICAL SOLUTIONS OF THE CHOQUARD EQUATIONS IN R3
    Jin, Ke
    Shen, Zifei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 568 - 586
  • [9] Distance-Regular Graphs with Valency k , Diameter D > 3 and at Most Dk
    Park, Jongyook
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (03): : 499 - 504
  • [10] A CLASSIFICATION OF TETRAVALENT ONE-REGULAR GRAPHS OF ORDER 3p2
    Ghasemi, Mohsen
    COLLOQUIUM MATHEMATICUM, 2012, 128 (01) : 15 - 24