Video Colorization Based on Variational Autoencoder

被引:1
作者
Zhang, Guangzi [1 ]
Hong, Xiaolin [1 ]
Liu, Yan [1 ]
Qian, Yulin [1 ]
Cai, Xingquan [1 ]
机构
[1] North China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R China
关键词
video colorization; temporal consistency; variational autoencoder;
D O I
10.3390/electronics13122412
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a variational autoencoder network designed for video colorization using reference images, addressing the challenge of colorizing black-and-white videos. Although recent techniques perform well in some scenarios, they often struggle with color inconsistencies and artifacts in videos that feature complex scenes and long durations. To tackle this, we propose a variational autoencoder framework that incorporates spatio-temporal information for efficient video colorization. To improve temporal consistency, we unify semantic correspondence with color propagation, allowing for simultaneous guidance in colorizing grayscale video frames. Additionally, the variational autoencoder learns spatio-temporal feature representations by mapping video frames into a latent space through an encoder network. The decoder network then transforms these latent features back into color images. Compared to traditional coloring methods, our approach accurately captures temporal relationships between video frames, providing precise colorization while ensuring video consistency. To further enhance video quality, we apply a specialized loss function that constrains the generated output, ensuring that the colorized video remains spatio-temporally consistent and natural. Experimental results demonstrate that our method significantly improves the video colorization process.
引用
收藏
页数:19
相关论文
共 33 条
[1]  
Alacaoglu A, 2023, Arxiv, DOI arXiv:2203.15797
[2]  
Baldassarre F, 2017, Arxiv, DOI arXiv:1712.03400
[3]   Blind Video Temporal Consistency [J].
Bonneel, Nicolas ;
Tompkin, James ;
Sunkavalli, Kalyan ;
Sun, Deqing ;
Paris, Sylvain ;
Pfister, Hanspeter .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06)
[4]  
Chen SQ, 2023, Arxiv, DOI arXiv:2303.15081
[5]   Deep Colorization [J].
Cheng, Zezhou ;
Yang, Qingxiong ;
Sheng, Bin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :415-423
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Learning Large-Scale Automatic Image Colorization [J].
Deshpande, Aditya ;
Rock, Jason ;
Forsyth, David .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :567-575
[8]  
Goodfellow I.J., 2017, J JAPAN SOC FUZZY TH, V29, P177, DOI [DOI 10.3156/JSOFT.29.51772, 10.3156/jsoft.29.51772]
[9]  
Grassl I, 2023, Arxiv, DOI arXiv:2304.08947
[10]  
Gupta R. K., 2022, P 20 ACM INT C MULT, P369, DOI [10.1145/2393347.2393402, DOI 10.1145/2393347.2393402]