Comparative Study Among Graphene Oxide Structures and Their Influence on Electrical Conductivity

被引:0
|
作者
Fenner, Bruna R. [1 ]
Lazzari, Lidia K. [1 ]
Zattera, Ademir J. [2 ]
Santana, Ruth M. C. [1 ]
机构
[1] Univ Fed Rio Grande Sul UFRGS, Ave Bento Goncalves 9500, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Caxias Sul UCS, R Francisco Getulio Vargas 1130, BR-95070560 Caxias Do Sul, RS, Brazil
来源
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS | 2024年 / 27卷
关键词
Graphene oxide; reduced graphene oxide; Hummers'method; electrical conductivity; CARBON NANOTUBES; FUNCTIONALIZED GRAPHENE; POLYURETHANE SPONGE; CHEMICAL-REDUCTION; GRAPHITE OXIDE; OXIDATION; EXFOLIATION; NANOSHEETS; SINGLE; NANOHYBRIDS;
D O I
10.1590/1980-5373-MR-2023-0446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since graphene and its derivatives discovery, the desire to develop accessible production methods and obtain high-quality materials to enable its production on an industrial scale has increased research interest in this field, and in techniques aiming a deep characterization of these materials. Based on this, the present study proposes a great reduction of time in the process steps of reduced graphene oxide (rGO) production. By using micronized graphite as the precursor, the exfoliation and reduction time were reduced, 67 and 75% respectively, without compromising rGO properties. Regarding the number of layers, the carbon structures presented results between 7 (rGO) and 10 (graphene oxide), being the best result of 8 layers after 10 minutes of exfoliation. Moreover, the electrical conductivity methodology proposed in this article was based on statistical analysis. The electrical conductivity of suspensions with 0.5% w/w of carbon structures was between 3400 and 3700 mu S.cm-1. Thus, this study opens the way for obtaining graphene oxides by the modified Hummers' method and shorter process time in exfoliation and reduction steps using micronized graphite as the precursor, and it also provides a methodology to determine the electrical conductivity of suspensions to assist these materials characterization without prior elimination of the solvent.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids
    Hadadian, Mahboobeh
    Goharshadi, Elaheh K.
    Youssefi, Abbas
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (12)
  • [12] Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity
    Larraza, I
    Alonso-Lerma, B.
    Gonzalez, K.
    Gabilondo, N.
    Perez-Jimenez, R.
    Corcuera, M. A.
    Arbelaiz, A.
    Eceiza, A.
    EXPRESS POLYMER LETTERS, 2020, 14 (11) : 1018 - 1033
  • [13] Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites
    Yeom, Hyo Yeol
    Na, Hyo Yeol
    Lee, Seong Jae
    POLYMER-KOREA, 2014, 38 (04) : 502 - 509
  • [14] A comparative study of graphene oxide: Hummers, intermediate and improved method
    Yadav, Nisha
    Lochab, Bimlesh
    FLATCHEM, 2019, 13 : 40 - 49
  • [15] A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites
    Phiri, Josphat
    Johansson, Leena-Sisko
    Gane, Patrick
    Maloney, Thad
    COMPOSITES PART B-ENGINEERING, 2018, 147 : 104 - 113
  • [16] Reduced Graphene Oxide: Effect of Reduction on Electrical Conductivity
    Rao, Sanjeev
    Upadhyay, Jahnavee
    Polychronopoulou, Kyriaki
    Umer, Rehan
    Das, Raj
    JOURNAL OF COMPOSITES SCIENCE, 2018, 2 (02):
  • [17] Graphene oxide with improved electrical conductivity for supercapacitor electrodes
    Li, Z. J.
    Yang, B. C.
    Zhang, S. R.
    Zhao, C. M.
    APPLIED SURFACE SCIENCE, 2012, 258 (08) : 3726 - 3731
  • [18] Comparative Response of Biosensing Platforms Based on Synthesized Graphene Oxide and Electrochemically Reduced Graphene
    Casero, E.
    Alonso, C.
    Vazquez, L.
    Petit-Dominguez, M. D.
    Parra-Alfambra, A. M.
    de la Fuente, M.
    Merino, P.
    Alvarez-Garcia, S.
    de Andres, A.
    Pariente, F.
    Lorenzo, E.
    ELECTROANALYSIS, 2013, 25 (01) : 154 - 165
  • [19] Study on Electrical Conductivity of Graphene Oxide Decorated with Silver Nanoparticle for Electrochemical Sensor Development
    Ridzuan, Auni Rauhah
    Ibrahim, Suriani
    Karman, Salmah
    Ab Karim, Mohd Sayuti
    Zaman, Wan Safwani Wan Kamarul
    Khuen, Chan Chow
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (05): : 1 - 11
  • [20] Functionalization of cotton by reduced graphene oxide for improved electrical conductivity
    He, Shan
    Xin, Binjie
    Chen, Zhuoming
    Liu, Yan
    TEXTILE RESEARCH JOURNAL, 2019, 89 (06) : 1038 - 1050