Bacterial muropeptides promote OXPHOS and suppress mitochondrial stress in mammals

被引:1
作者
Tian, Dong [1 ]
Cui, Mingxue [1 ]
Han, Min [1 ]
机构
[1] Univ Colorado Boulder, Dept MCDB, Boulder, CO 80309 USA
关键词
ATP SYNTHASE; LEIGH-SYNDROME; OXIDATIVE-PHOSPHORYLATION; GUT MICROBIOTA; PEPTIDOGLYCAN; CELL; MUTATION; T8993G; DYSFUNCTION; METABOLISM;
D O I
10.1016/j.celrep.2024.114067
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro , supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.
引用
收藏
页数:22
相关论文
共 72 条
[1]   The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior [J].
Arentsen, T. ;
Qian, Y. ;
Gkotzis, S. ;
Femenia, T. ;
Wang, T. ;
Udekwu, K. ;
Forssberg, H. ;
Heijtz, R. Diaz .
MOLECULAR PSYCHIATRY, 2017, 22 (02) :257-266
[2]   Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus [J].
Baik, Jung Eun ;
Jang, Young-Oh ;
Kang, Seok-Seong ;
Cho, Kun ;
Yun, Cheol-Heui ;
Han, Seung Hyun .
MOLECULAR IMMUNOLOGY, 2015, 65 (01) :77-85
[3]   Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics [J].
Baker, Nicole ;
Patel, Jeel ;
Khacho, Mireille .
MITOCHONDRION, 2019, 49 :259-268
[4]   Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection [J].
Baldridge, Megan T. ;
Nice, Timothy J. ;
McCune, Broc T. ;
Yokoyama, Christine C. ;
Kambal, Amal ;
Wheadon, Michael ;
Diamond, Michael S. ;
Ivanova, Yulia ;
Artyomov, Maxim ;
Virgin, Herbert W. .
SCIENCE, 2015, 347 (6219) :266-269
[5]   Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis [J].
Balogh, Emese ;
Veale, Douglas J. ;
McGarry, Trudy ;
Orr, Carl ;
Szekanecz, Zoltan ;
Ng, Chin-Teck ;
Fearon, Ursula ;
Biniecka, Monika .
ARTHRITIS RESEARCH & THERAPY, 2018, 20
[6]   Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies [J].
Bhatti, Jasvinder Singh ;
Bhatti, Gurjit Kaur ;
Reddy, P. Hemachandra .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2017, 1863 (05) :1066-1077
[7]   Assessing mitochondrial dysfunction in cells [J].
Brand, Martin D. ;
Nicholls, David G. .
BIOCHEMICAL JOURNAL, 2011, 435 :297-312
[8]   Microbiota alters the metabolome in an age- and sex- dependent manner in mice [J].
Brown, Kirsty ;
Thomson, Carolyn A. ;
Wacker, Soren ;
Drikic, Marija ;
Groves, Ryan ;
Fan, Vina ;
Lewis, Ian A. ;
McCoy, Kathy D. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[9]   Microbiota and metabolites in metabolic diseases [J].
Cani, Patrice D. .
NATURE REVIEWS ENDOCRINOLOGY, 2019, 15 (02) :69-70
[10]   The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease [J].
Cani, Patrice D. ;
Delzenne, Nathalie M. .
CURRENT PHARMACEUTICAL DESIGN, 2009, 15 (13) :1546-1558