Visibility-derived aerosol optical depth over global land from 1959 to 2021

被引:4
作者
Hao, Hongfei [1 ]
Wang, Kaicun [2 ]
Zhao, Chuanfeng [3 ]
Wu, Guocan [1 ]
Li, Jing [3 ]
机构
[1] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Fac Geog Sci, Beijing 100875, Peoples R China
[2] Peking Univ, Inst Carbon Neutral, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Inst Carbon Neutral, Coll Urban & Environm Sci, Sch Phys,Dept Atmospher & Ocean Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
COLLECTION; 6; MODIS; ATMOSPHERIC AEROSOLS; SPECTRAL ABSORPTION; BOUNDARY-LAYER; PRODUCTS; TRENDS; CHINA; CLIMATE; AERONET; OCEAN;
D O I
10.5194/essd-16-3233-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Long-term and high spatial resolution aerosol optical depth (AOD) data are essential for climate change detection and attribution. Global ground-based AOD observations are sparsely distributed, and satellite AOD retrievals have a low temporal frequency as well low accuracy before 2000 over land. In this study, AOD at 550 nm is derived from visibility observations collected at more than 5000 meteorological stations over global land regions from 1959 to 2021. The AOD retrievals (550 nm) of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua Earth observation satellite are used to train the machine learning model, and the ERA5 reanalysis boundary layer height is used to convert the surface visibility to AOD. Comparisons with an independent dataset (AERONET ground-based observations) show that the predicted AOD has a correlation coefficient of 0.55 at the daily scale. The correlation coefficients are higher at monthly and annual scales, which are 0.61 and 0.65, respectively. The evaluation shows consistent predictive ability prior to 2000, with correlation coefficients of 0.54, 0.66, and 0.66 at the daily, monthly, and annual scales, respectively. Due to the small number and sparse visibility stations prior to 1980, the global and regional analysis in this study is from 1980 to 2021. From 1980 to 2021, the mean visibility-derived AOD values over global land areas, the Northern Hemisphere, and the Southern Hemisphere are 0.177, 0.178, and 0.175, with a trend of -0.0029 per 10 years, -0.0030 per 10 years, and -0.0021 per 10 years from 1980 to 2021. The regional means (trends) of AOD are 0.181 (-0.0096 per 10 years), 0.163 (-0.0026 per 10 years), 0.146 (-0.0017 per 10 years), 0.165 (-0.0027 per 10 years), 0.198 (-0.0075 per 10 years), 0.281 (-0.0062 per 10 years), 0.182 (-0.0016 per 10 years), 0.133 (-0.0028 per 10 years), 0.222 (0.0007 per 10 years), 0.244 (-0.0009 per 10 years), 0.241 (0.0130 per 10 years), and 0.254 (0.0119 per 10 years) in Eastern Europe, Western Europe, Western North America, Eastern North America, Central South America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India, respectively. However, the trends decrease significantly in Eastern China (-0.0572 per 10 years) and Northeast Asia (-0.0213 per 10 years) after 2014, with the larger increasing trend found after 2005 in India (0.0446 per 10 years). The visibility-derived daily AOD dataset at 5032 stations over global land from 1959 to 2021 is available from the National Tibetan Plateau/Third Pole Environment Data Center (10.11888/Atmos.tpdc.300822) (Hao et al., 2023).
引用
收藏
页码:3233 / 3260
页数:28
相关论文
共 116 条
[1]  
ACKERMAN AS, 1995, J ATMOS SCI, V52, P1204, DOI 10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO
[2]  
2
[3]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[4]   An "A-Train" strategy for quantifying direct climate forcing by anthropogenic aerosols [J].
Anderson, TL ;
Charlson, RJ ;
Bellouin, N ;
Boucher, O ;
Chin, M ;
Christopher, SA ;
Haywood, J ;
Kaufman, YJ ;
Kinne, S ;
Ogren, JA ;
Remer, LA ;
Takemura, T ;
Tanré, D ;
Torres, O ;
Trepte, CR ;
Wielicki, BA ;
Winker, DM ;
Yu, HB .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (12) :1795-+
[5]   OVERVIEW OF THE NOAA/ESRL FEDERATED AEROSOL NETWORK [J].
Andrews, Elisabeth ;
Sheridan, Patrick J. ;
Ogren, John A. ;
Hageman, Derek ;
Jefferson, Anne ;
Wendell, Jim ;
Alastuey, Andres ;
Alados-Arboledas, Lucas ;
Bergin, Michael ;
Ealo, Marina ;
Hallar, A. Gannet ;
Hoffer, Andras ;
Kalapov, Ivo ;
Keywood, Melita ;
Kim, Jeongeun ;
Kim, Sang-Woo ;
Kolonjari, Felicia ;
Labuschagne, Caspeper ;
Lin, Neng-Huei ;
Macdonald, AnneMarie ;
Mayol-Bracero, Olga L. ;
McCubbin, Ian B. ;
Pandolfi, Marco ;
Reisen, Fabienne ;
Sharma, Sangeeta ;
Sherman, James P. ;
Sorribas, Mar ;
Sun, Junying .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (01) :123-135
[6]  
[Anonymous], 2001, Acta Meteorol. Sin., DOI [DOI 10.11676/QXXB2001.039, 10.11676/qxxb2001.039]
[7]   Spectral absorption properties of atmospheric aerosols [J].
Bergstrom, R. W. ;
Pilewskie, P. ;
Russell, P. B. ;
Redemann, J. ;
Bond, T. C. ;
Quinn, P. K. ;
Sierau, B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (23) :5937-5943
[8]  
Berk R.A., 2008, Statistical Learning from a Regression Perspective, P1, DOI DOI 10.1007/978-0-387-77501-2_3
[9]   Numerical investigation of the possibility to determine the primary particle size of fractal aggregates by measuring light depolarization [J].
Bescond, Alexandre ;
Yon, Jerome ;
Girasole, Thierry ;
Jouen, Corentin ;
Roze, Claude ;
Coppalle, Alexis .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 126 :130-139
[10]   Observations and projections of visibility and aerosol optical thickness (1956-2100) in the Netherlands: impacts of time-varying aerosol composition and hygroscopicity [J].
Boers, R. ;
van Weele, M. ;
van Meijgaard, E. ;
Savenije, M. ;
Siebesma, A. P. ;
Bosveld, F. ;
Stammes, P. .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (01)