Optical amplification across the whole communication windows in PbS quantum-dot-doped fiber

被引:1
作者
Cui, Junjie [1 ]
Chen, Daoyuan [1 ]
Fang, Zaijin [2 ]
Liu, Xiaofeng [3 ]
Chen, Zhi [4 ]
Qiu, Jianrong [1 ]
Xu, Beibei [1 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[2] Jinan Univ, Inst Photon Technol, Guangdong Prov Key Lab Opt Fiber Sensing & Commun, Guangzhou 511443, Peoples R China
[3] Zhejiang Univ, Coll Mat Sci & Engn, Hangzhou 310027, Peoples R China
[4] Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金;
关键词
PbS quantum dots; Glass fiber; Ultra-broadband optical amplification; LASER; AMPLIFIER; EMISSION; CAPACITY;
D O I
10.1016/j.yofte.2024.103822
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The surge of big data, cloud computing, and AI bring in explosive requirement of data transmission capacities. However, the transmission capacity of traditional single-mode-fiber already reaches its limit due to the narrow emission bandwidth of rare-earth-ion. Here, we achieved ultra-broadband optical amplification in O + E + S + C + L bands for the first time in PbS quantum-dot-doped glass fiber with the maximum gain of 5 dB at 1370 nm under 100 mW pump. The mechanism of the broadband optical amplification, the advantages of quantum dotdoped fiber amplifier (QDFA), and a new measurement scheme for QDFA are systematically discussed. It is believed that in the future, the further optimization of the composition and architectures of the glass fiber, and the preparation method of quantum dot-doped fiber may lead to important applications in optical interconnection, artificial intelligence, Internet of things, mobile electronics and so on.
引用
收藏
页数:6
相关论文
共 42 条
[11]   Next Generation FEC for High-Capacity Communication in Optical Transport Networks [J].
Djordjevic, Ivan B. ;
Arabaci, Murat ;
Minkov, Lyubomir L. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (16) :3518-3530
[12]   Formation and photoluminescence property of PbS quantum dots in silica optical fiber based on atomic layer deposition [J].
Dong, Yanhua ;
Wen, Jianxiang ;
Pang, Fufei ;
Luo, Yanhua ;
Peng, Gang-ding ;
Chen, Zhenyi ;
Wang, Tingyun .
OPTICAL MATERIALS EXPRESS, 2015, 5 (04) :712-719
[13]   The World's Technological Capacity to Store, Communicate, and Compute Information [J].
Hilbert, Martin ;
Lopez, Priscila .
SCIENCE, 2011, 332 (6025) :60-65
[14]   A solution-processed 1.53μm quantum dot laser with temperature-invariant emission wavelength [J].
Hoogland, S ;
Sukhovatkin, V ;
Howard, I ;
Cauchi, S ;
Levina, L ;
Sargent, EH .
OPTICS EXPRESS, 2006, 14 (08) :3273-3281
[15]   A pixelated MIMO wireless optical communication system [J].
Hranilovic, Steve ;
Kschischang, Frank R. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (04) :859-874
[16]   Review of Perovskite Micro -and Nano-Lasers [J].
Huang Sihao ;
Liu Zhengzheng ;
Du Juan ;
Leng Yuxin .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (07)
[17]   Electronic structure and optical properties of PbS and PbSe quantum dots [J].
Kang, I ;
Wise, FW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (07) :1632-1646
[18]   Optical Communication in Space: Challenges and Mitigation Techniques [J].
Kaushal, Hemani ;
Kaddoum, Georges .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (01) :57-96
[19]   Carrier Multiplication in PbS Quantum Dots Anchored on a Au Tip using Conductive Atomic Force Microscopy [J].
Kim, Sung-Tae ;
Kim, Ji-Hee ;
Lee, Young Hee .
ADVANCED MATERIALS, 2020, 32 (17)
[20]   Quantization of multiparticle Auger rates in semiconductor quantum dots [J].
Klimov, VI ;
Mikhailovsky, AA ;
McBranch, DW ;
Leatherdale, CA ;
Bawendi, MG .
SCIENCE, 2000, 287 (5455) :1011-1013