Probing the long-term thermal stability mechanism of multi-rare-earth oxide-doped zirconia for solid oxide fuel cell electrolyte

被引:4
作者
Lang, Jiefu [1 ]
Ren, Ke [1 ]
Wang, Yiguang [1 ]
机构
[1] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cells; Long-term thermal stability; Lattice distortion; Zirconia doped with multi-rare-earth oxides; ELECTRICAL-CONDUCTIVITY; IONIC-CONDUCTIVITY; PHASE-STABILITY; SCANDIA; MICROSTRUCTURE; ZRO2; SYSTEM; YSZ; DEGRADATION; CERAMICS;
D O I
10.1016/j.jeurceramsoc.2024.116681
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The insufficient long-term thermal stability of 8 mol% yttria-stabilized zirconia (8YSZ) is caused by the formation and growth of the short-range ordered structure phase (t" phase). This has limited the feasibility of utilizing this material as a solid electrolyte in solid oxide fuel cells (SOFCs). In this work, the long-term thermal stability of doped zirconia is improved by a multi-rare-earth oxide doping strategy. This strategy leads to lattice distortion and high dislocation density, causing an increase in migration energy (Em), and the association energy (Eass) is lowered. Consequently, the generation of the t" phase is limited, and ionic conductivity does not significantly decrease during annealing. This work offers a new strategy for controlling the lattice distortion in electrolyte materials by regulating the radius and the content of dopants to realize a synergistic improvement in long-term thermal stability and ionic conductivity.
引用
收藏
页数:11
相关论文
共 66 条
[1]   Structural, Mechanical, and Transport Properties of Scandia and Yttria Partially Stabilized Zirconia Crystals [J].
Agarkova, E. A. ;
Borik, M. A. ;
Kulebyakin, A. V. ;
Kuritsyna, I. E. ;
Lomonova, E. E. ;
Milovich, F. O. ;
Myzina, V. A. ;
Osiko, V. V. ;
Tabachkova, N. Yu. .
INORGANIC MATERIALS, 2019, 55 (07) :748-753
[2]   A first-principles study on defect association and oxygen ion migration of Sm3+ and Gd3+ co-doped ceria [J].
Alaydrus, Musa ;
Sakaue, Mamoru ;
Aspera, Susan M. ;
Wungu, Triati D. K. ;
Linh, Tran P. T. ;
Kasai, Hideaki ;
Ishihara, Tatsumi ;
Mohri, Takahiro .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (22)
[3]   The Effect of Alumina Addition on the Conductivity, Microstructure and Mechanical Strength of Zirconia - Yttria Electrolytes [J].
Badwal, S. P. S. ;
Ciacchi, F. T. ;
Zelizko, V. .
IONICS, 1998, 4 (1-2) :25-32
[4]   Oxygen-Ion Conducting Electrolyte Materials for Solid Oxide Fuel Cells [J].
Badwal, S. P. S. ;
Ciacchi, F. T. .
IONICS, 2000, 6 (1-2) :1-21
[5]   ZIRCONIA-BASED SOLID ELECTROLYTES - MICROSTRUCTURE, STABILITY AND IONIC-CONDUCTIVITY [J].
BADWAL, SPS .
SOLID STATE IONICS, 1992, 52 (1-3) :23-32
[6]   Aging effect of 8 mol % YSZ ceramics with different microstructures [J].
Balakrishnan, N ;
Takeuchi, T ;
Nomura, K ;
Kageyama, H ;
Takeda, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1286-A1291
[7]   Effect of Aging on the Electrochemical Performance of LSM-YSZ Cathodes [J].
Baque, L. C. ;
Jorgensen, P. S. ;
Zhang, W. ;
Hansen, K. V. ;
Sogaard, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :F971-F981
[8]   Ionic and electronic conductivity of 3 mol% Fe2O3-substituted cubic yttria-stabilized ZrO2 (YSZ) and scandia-stabilized ZrO2 (ScSZ) [J].
Bohnke, O. ;
Gunes, V. ;
Kravchyk, K. V. ;
Belous, A. G. ;
Yanchevskii, O. Z. ;
V'Yunov, O. I. .
SOLID STATE IONICS, 2014, 262 :517-521
[9]   On the ionic conductivity of some zirconia-derived high-entropy oxides [J].
Bonnet, E. ;
Grenier, J. C. ;
Bassat, J. M. ;
Jacob, A. ;
Delatouche, B. ;
Bourdais, S. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (08) :4505-4515
[10]   FERROELASTIC DOMAIN SWITCHING IN TETRAGONAL ZIRCONIA SINGLE-CRYSTALS MICROSTRUCTURAL ASPECTS [J].
CHAN, CJ ;
LANGE, FF ;
RUHLE, M ;
JUE, JF ;
VIRKAR, AV .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (04) :807-813