The Tits alternative for two-dimensional Artin groups and Wise's power alternative

被引:2
作者
Martin, Alexandre [1 ,2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Tits alternative; Artin groups; AUTOMORPHISMS; LINEARITY; SUBGROUPS;
D O I
10.1016/j.jalgebra.2023.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two-dimensional Artin groups satisfy a strengthening of the Tits alternative: their subgroups either contain a non -abelian free group or are virtually free abelian of rank at most 2. When in addition the associated Coxeter group is hyperbolic, we answer in the affirmative a question of Wise on the subgroups generated by large powers of two elements: given any two elements a, b of a two-dimensional Artin group of hyperbolic type, there exists an integer n >= 1 such that a n and b n either commute or generate a non -ab elian free subgroup. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:294 / 323
页数:30
相关论文
共 31 条
[1]   SUBGROUPS OF SEMIFREE GROUPS [J].
BAUDISCH, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4) :19-28
[2]  
Bestvina M., 2004, QUESTIONS GEOMETRIC
[3]   Non-positively curved aspects of Artin groups of finite type [J].
Bestvina, Mladen .
GEOMETRY & TOPOLOGY, 1999, 3 :269-302
[4]  
Bridson M.R., 2013, Metric Spaces of Non-Positive Curvature, V319
[6]   Rank Rigidity for Cat(0) Cube Complexes [J].
Caprace, Pierre-Emmanuel ;
Sageev, Michah .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (04) :851-891
[7]   THE K(PI,1)-PROBLEM FOR HYPERPLANE COMPLEMENTS ASSOCIATED TO INFINITE REFLECTION GROUPS [J].
CHARNEY, R ;
DAVIS, MW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (03) :597-627
[8]   Linearity of Artin groups of finite type [J].
Cohen, AM ;
Wales, DB .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 131 (1) :101-123
[9]   Automorphisms and abstract commensurators of 2-dimensional Artin groups [J].
Crisp, J .
GEOMETRY & TOPOLOGY, 2005, 9 :1381-1441
[10]   On the linearity of Artin braid groups [J].
Digne, F .
JOURNAL OF ALGEBRA, 2003, 268 (01) :39-57