Experimental and numerical study of combustion and emission characteristics of NH3/CH4/air premixed swirling flames with air-staging in a model combustor

被引:7
|
作者
Tu, Yaojie [1 ,2 ]
Zhang, Haiyang [1 ]
Guiberti, Thibault F. [3 ,4 ]
Jimenez, Cristian D. Avila [3 ,4 ]
Liu, Hao [1 ]
Roberts, William L. [3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[2] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[3] King Abdullah Univ Sci & Technol, CCRC, Thuwal 239556900, Saudi Arabia
[4] King Abdullah Univ Sci & Technol, PSE, Mech Engn Program, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
NH3/CH4 premixed flame; Two-stage combustion; Rich-lean combustion; NO emission; TURBINE LIKE COMBUSTOR; NOX; AMMONIA; TEMPERATURE; NH3/H-2/AIR; CHEMISTRY; HYDROGEN; NH3/AIR; FUELS;
D O I
10.1016/j.apenergy.2024.123370
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the context of low-carbon transition, ammonia (NH3) is considered as a promising zero-carbon fuel owing to its high hydrogen density, well-established storage, and transportation systems. However, its low reactivity and high nitrogen content could induce flame instability and high NO emission problems during combustion, which hinders its large-scale application in industrial furnaces, gas turbines, and engines. The reactivity of NH3 can be effectively boosted by blending it with a more reactive fuel, such as methane (CH4). In addition, it has been demonstrated that burning NH3 at slightly rich equivalence ratios produces low NO emissions, but air-staging is needed to oxidize the unburned fuel in a secondary lean combustion zone. This paper carries out an experimental and numerical study for NH3/CH4 premixed swirling flames in a model combustor with and without air-staging. The main objective is to investigate the potential of using air-staging for controlling NO emissions from NH3/CH4 flames, and to examine the influence of key air-staging parameters, such as staged air ratio (SAR), height of staged-air (H) and number of staged-air nozzle (N), on flame typology as well as NO and CO emissions. Experimental results show that globally lean condition fails to generate satisfactory NO emission for NH3/CH4 mixtures under non-staging mode, and the maximum NO emission is produced by the X-NH3 = 50% mixture which exhibits the largest challenge for NO control. By initiating air-staging for X-NH3 = 50% mixture, the flame topology as well as CO and NO emissions are strongly affected by the key air-staging parameters. In relatively large SAR (> 30%) and small H (< 80 mm) conditions, the staged-air impinging effect should be taken into consideration since it could destroy the locally rich atmosphere in the primary combustion zone, creating lean burning pockets and enhancing NO formation. Increasing N plays an accelerating role on NO generation due to improved mixing homogeneity in the vicinity of staged-air, while this effect can be counteracted by mitigating the staged-air impinging effect via decreasing the staged-air injection momentum. Moreover, an improved NH3/CH4 reaction mechanism based on Okafor's is proposed which shows remarkably high accuracy in predicting NO emission for NH3/CH4 mixtures under both non-staging and air-staging modes. This work provides new insights towards the understanding of NH3/CH4 combustion using air-staging.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Effects of air-staging and heat losses on NO emissions of NH3/CH4/air swirling flames
    Wang, Shixing
    Elbaz, Ayman M.
    Wang, Zhihua
    Roberts, William L.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [2] Combustion and emission characteristics of NH3/CH4/air in a model swirl combustor: Comparison between premixed and non-premixed modes
    Tu, Yaojie
    Xu, Shunta
    Liu, Hao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (45) : 17311 - 17323
  • [3] Effects of the secondary air on the combustion characteristics of turbulent premixed CH4/NH3/air flames in a two-stage swirl combustor
    Kim, Juhan
    Lee, Huido
    Lee, Jong Moon
    Park, Jeong
    Chung, Suk Ho
    Yoo, Chun Sang
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [4] Stabilization and Emission Characteristics of Gliding Arc-Assisted NH3/CH4/Air Premixed Flames in a Swirl Combustor
    Sun, Jinguo
    Huang, Qian
    Tang, Yong
    Li, Shuiqing
    ENERGY & FUELS, 2022, 36 (15) : 8520 - 8527
  • [5] Experimental and numerical study on emission characteristics of NH3 /DME/air flames in a premixed burner
    Yu, Mingyu
    Luo, Guangqian
    Sun, Ruize
    Qiu, Wencong
    Chen, Lingxuan
    Wang, Li
    Hu, Zhenzhong
    Li, Xian
    Yao, Hong
    COMBUSTION AND FLAME, 2024, 259
  • [6] Experimental Investigation of the Structure and NO Emissions from Swirling Lean Premixed NH3/CH4/Air Flames and Their Correlation with OH
    Wang, Shixing
    Wang, Guoqing
    Elbaz, Ayman M.
    Guiberti, Thibault F.
    Roberts, William L.
    ENERGY & FUELS, 2023, 37 (17) : 13341 - 13353
  • [7] Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames
    Han, Xinlu
    Wang, Zhihua
    Costa, Mario
    Sun, Zhiwei
    He, Yong
    Cen, Kefa
    COMBUSTION AND FLAME, 2019, 206 : 214 - 226
  • [8] An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature
    Zhou, Shangkun
    Cui, Baochong
    Yang, Wenjun
    Tan, Houzhang
    Wang, Jinhua
    Dai, Hongchao
    Li, Liangyu
    Rahman, Zia Ur
    Wang, Xiaoxiao
    Deng, Shuanghui
    Wang, Xuebin
    COMBUSTION AND FLAME, 2023, 248
  • [9] Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames
    Filipe Ramos, C.
    Rocha, Rodolfo C.
    Oliveira, Pedro M. R.
    Costa, Mario
    Bai, Xue-Song
    FUEL, 2019, 254
  • [10] Flame Characteristics and NO Emission Behaviors in (CH4+NH3)/air Counterflow Premixed Flames Having Downstream Interaction with Opposed NH3/air Premixed Flames
    Lee, Huido
    Yoo, Chun Sang
    Park, Jeong
    JOURNAL OF THE KOREAN SOCIETY OF COMBUSTION, 2024, 29 (01) : 57 - 65