1064 nm rotational Raman polarization lidar for profiling aerosol and cloud characteristics

被引:2
作者
Wang, Longlong [1 ]
Yin, Zhenping [1 ]
Lu, Tong [1 ]
Yi, Yang [1 ]
Dong, Xiangyu [1 ]
Dai, Yaru [2 ]
Bu, Zhichao [2 ]
Chen, Yubao [2 ]
Wang, Xuan [1 ,3 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] China Meteorol Adm, Meteorol Observat Ctr, 46 South Zhongguancun Rd, Beijing 100081, Peoples R China
[3] Wuhan Inst Quantum Technol, Wuhan 430206, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 09期
基金
中国国家自然科学基金;
关键词
DEPOLARIZATION RATIO; MICROPHYSICAL PROPERTIES; SPECTRAL DEPENDENCE; CALIBRATION; EXTINCTION; SYSTEM; CLASSIFICATION; BACKSCATTERING; INSTRUMENT; RETRIEVAL;
D O I
10.1364/OE.518259
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The vertical profiles of aerosol or mixed-phase cloud optical properties (e.g. extinction coefficient) at 1064 nm are difficult to obtain from lidar observations. Based on the techniques of rotational Raman signal at 1058 nm described by Haarig et al. [Atmos. Meas. Tech. 9, 4269 (2016)], we have developed a novel rotational Raman polarization lidar at 1064 nm at Wuhan University. In this design, we optimized the central wavelength of the rotational Raman channel to 1056 nm with a bandwidth of 6 nm to increase the signal-to-noise ratio and minimize the temperature dependence of the extracted rotational Raman spectrum. And then separated elastic polarization channels (1064 nm Parallel, P and 1064 nm Cross, S) into near range (low 1064 nm P and 1064 nm S) and far range detection channels (high 1064 nm P and 1064 nm S) to extend the dynamic range of lidar observation. Silicon single photon avalanche diodes (SPAD) working at photon counting mode were applied to improve the quantum efficiency and reduce the electronic noise, which resulted in quantum efficiency of 2.5%. With a power of 3 W diode pumped pulsed Nd:YAG laser and aperture of 250 mm Cassegrain telescope, the detectable range can cover the atmosphere from 0.3 km to the top troposphere (about 12-15 km). To the best of our knowledge, the design of this novel lidar system is described and the mixed-phase cloud and aerosol optical properties observations of backscatter coefficients, extinction coefficients, lidar ratio and depolarization ratio at 1064 nm were performed as demonstrations of the system capabilities.
引用
收藏
页码:14963 / 14977
页数:15
相关论文
共 50 条
  • [21] Dual-FOV Raman and Doppler lidar studies of aerosol-cloud interactions: Simultaneous profiling of aerosols, warm-cloud properties, and vertical wind
    Schmidt, Joerg
    Ansmann, Albert
    Buehl, Johannes
    Baars, Holger
    Wandinger, Ulla
    Mueller, Detlef
    Malinka, Aleksey V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (09) : 5512 - 5527
  • [22] Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements
    Cuesta, Juan
    Flamant, Pierre H.
    [J]. APPLIED OPTICS, 2010, 49 (12) : 2232 - 2243
  • [23] A Novel Calibration Method for Pure Rotational Raman Lidar Temperature Profiling
    He, Jingxi
    Chen, Siying
    Zhang, Yinchao
    Guo, Pan
    Chen, He
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (19) : 10925 - 10934
  • [24] Compact airborne Raman lidar for profiling aerosol, water vapor and clouds
    Liu, Bo
    Wang, Zhien
    Cai, Yong
    Wechsler, Perry
    Kuestner, William
    Burkhart, Matthew
    Welch, Wayne
    [J]. OPTICS EXPRESS, 2014, 22 (17): : 20613 - 20621
  • [25] Continuous vertical aerosol profiling with a multi-wavelength Raman polarization lidar over the Pearl River Delta, China
    Heese, Birgit
    Baars, Holger
    Bohlmann, Stephanie
    Althausen, Dietrich
    Deng, Ruru
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (11) : 6679 - 6691
  • [26] Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley
    Wang, Longlong
    Macak, Marija Bervida
    Stanic, Samo
    Bergant, Klemen
    Gregoric, Asta
    Drinovec, Luka
    Mocnik, Grisa
    Yin, Zhenping
    Yi, Yang
    Mueller, Detlef
    Wang, Xuan
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [27] Efficient Ultraviolet Rotational Raman Lidar for Temperature Profiling of the Planetary Boundary Layer
    Imaki, Masaharu
    Kawai, Hisaji
    Kato, Tadashi
    Hasegawa, Toshikazu
    Kobayashi, Takao
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (05)
  • [28] Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
    Yuan, Yun
    Di, Huige
    Liu, Yuanyuan
    Yang, Tao
    Li, Qimeng
    Yan, Qing
    Xin, Wenhui
    Li, Shichun
    Hua, Dengxin
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (16) : 4989 - 5006
  • [29] Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS
    Madonna, F.
    Amato, F.
    Hey, J. Vande
    Pappalardo, G.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (05) : 2207 - 2223
  • [30] Properties of aerosol and cloud from Raman-mie lidar and Radar soundings
    Wang, Zhenzhu
    Liu, Dong
    Wu, Decheng
    Wang, Bangxing
    Zhong, Zhiqing
    Xie, Chenbo
    Wang, Yingjian
    Borovoi, Anatoli
    Konoshonkin, Alexander
    Kustova, Natalia
    [J]. 24TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2018, 10833