Emission Spectroscopic Diagnosis of 2-D Particle Distribution in Vacuum Arcs Under Different Currents

被引:3
作者
Li, Yilong [1 ,2 ]
Yuan, Zhao [1 ,2 ]
Liu, Shan [1 ,2 ]
Chen, Lixue [1 ,2 ]
Wu, Chuanqi [3 ]
Ya, Penglong [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Minist Educ, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Key Lab Pulsed Power Technol, Minist Educ, Wuhan 430074, Peoples R China
[3] State Grid Hubei Elect Power Res Inst, Wuhan 430074, Peoples R China
关键词
Optical fibers; Vacuum arcs; Spectroscopy; Optical imaging; Copper; Optical fiber sensors; Atoms; 2-D distribution; emission spectroscopy; fiber array; vacuum arc; vacuum switch; CATHODE SPOT;
D O I
10.1109/TPS.2024.3424877
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spectroscopic observation serves as a crucial tool for vacuum arc diagnosis. However, spectrometers often rely on a narrow slit for light collection, limiting spectral information to a single dimension along the slit. To address this limitation, an emission spectroscopy diagnostic system was developed, utilizing a specialized optical fiber array. This system enables the analysis of 2-D plasma parameter distributions in vacuum arcs. Through experimental studies, we have gained insights into the 2-D distribution characteristics of particles within vacuum arcs across various peak current ranges. Specifically, we compared the 2-D distributions of the emission spectra of copper atoms (Cu I), chromium atoms (Cr I), copper single-charge ions (Cu II), and copper double-charge ions (Cu III) at the peak moments of the currents. Furthermore, we conducted a detailed analysis of how these 2-D distributions evolve as the peak current varies from 4 to 15 kA. This method not only offers fresh ideas for vacuum arc plasma diagnostics but also broadens the range of scenarios, where emission spectroscopy can be effectively utilized.
引用
收藏
页码:2837 / 2845
页数:9
相关论文
共 24 条
[1]   State of the theory of vacuum arcs [J].
Beilis, II .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2001, 29 (05) :657-670
[2]  
Beilis IsakI., 2020, Plasma and spot phenomena in electrical arcs
[3]  
Dong H, 2007, Vaccum, V44, P69
[4]  
Falkingham LT, 2019, Elec Power Equipment, P788, DOI 10.1109/ICEPE-ST.2019.8928778
[5]  
Jin Z, 2021, High Power Laser Part. Beams, V33, P120, DOI [10.11884/HPLPB202133.210116, DOI 10.11884/HPLPB202133.210116]
[6]  
Khakpour A, 2016, P 27 INT S DISCH EL, P1, DOI [10.1109/DEIV.2016.7748733, DOI 10.1109/DEIV.2016.7748733]
[7]   Investigation of Anode Plume in Vacuum Arcs Using Different Optical Diagnostic Methods [J].
Khakpour, Alireza ;
Franke, Steffen ;
Gortschakow, Sergey ;
Methling, Ralf ;
Popov, Sergey ;
Schneider, Anton V. ;
Uhrlandt, Dirk .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (08) :3488-3495
[8]   Optical and Electrical Investigation of Transition From Anode Spot Type 1 to Anode Spot Type 2 [J].
Khakpour, Alireza ;
Franke, Steffen ;
Methling, Ralf ;
Uhrlandt, Dirk ;
Gortschakow, Sergey ;
Popov, Sergey ;
Batrakov, Alexander ;
Weltmann, Klaus-Dieter .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (08) :2126-2134
[9]  
Kimblin C. W., 1974, IEEE Transactions on Plasma Science, VPS-2, P310, DOI 10.1109/TPS.1974.4316856
[10]   Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes [J].
Lisnyak, M. ;
Pipa, A. V. ;
Gorchakov, S. ;
Iseni, S. ;
St Franke ;
Khapour, A. ;
Methling, R. ;
Weltmann, K. -D. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (12)