Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe

被引:0
作者
Manavi, Stella E. I. [1 ,2 ]
Pandis, Spyros N. [1 ,2 ]
机构
[1] Univ Patras, Dept Chem Engn, Patras 26540, Greece
[2] Fdn Res & Technol Hellas, Inst Chem Engn Sci, Patras 26540, Greece
基金
欧盟地平线“2020”;
关键词
BASIS-SET APPROACH; AIR-POLLUTION SOURCES; GASOLINE VEHICLES; COMPOUNDS IVOCS; SOA FORMATION; EMISSIONS; SEMIVOLATILE; MODEL; DIESEL; SIMULATION;
D O I
10.5194/acp-24-891-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric organic compounds with an effective saturation concentration (C*) at 298K between 10(3) and 10(6) mu gm(-3) are called intermediate-volatility organic compounds (IVOCs), and they have been identified as important secondary organic aerosol (SOA) precursors. In this work, we simulate IVOCs emitted from on-road diesel and gasoline vehicles over Europe with a chemical transport model (CTM), utilizing a new approach in which IVOCs are treated as lumped species that preserve their chemical characteristics. This approach allows us to assess both the overall contribution of IVOCs to SOA formation and the role of specific compounds. For the simulated early-summer period, the highest concentrations of SOA formed from the oxidation of on-road IVOCs (SOA-iv) are predicted for major European cities, like Paris, Athens, and Madrid. In these urban environments, on-road SOA-iv can account for up to a quarter of the predicted total SOA. Over Europe, unspeciated cyclic alkanes in the IVOC range are estimated to account for up to 72% of the total on-road SOA-iv mass, with compounds with 15 to 20 carbons being the most prominent precursors. The sensitivity of the predicted SOA-iv concentrations to the selected parameters of the new lumping scheme is also investigated. Active multigenerational aging of the secondary aerosol products has the most significant effect as it increases the predicted SOA-iv concentrations by 67 %.
引用
收藏
页码:891 / 909
页数:19
相关论文
共 74 条
  • [1] Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation
    Ait-Helal, W.
    Borbon, A.
    Sauvage, S.
    de Gouw, J. A.
    Colomb, A.
    Gros, V.
    Freutel, F.
    Crippa, M.
    Afif, C.
    Baltensperger, U.
    Beekmann, M.
    Doussin, J-F
    Durand-Jolibois, R.
    Fronval, I.
    Grand, N.
    Leonardis, T.
    Lopez, M.
    Michoud, V.
    Miet, K.
    Perrier, S.
    Prevot, A. S. H.
    Schneider, J.
    Siour, G.
    Zapf, P.
    Locoge, N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (19) : 10439 - 10464
  • [2] An J., Atmos. Chem. Phys., V23, P323, DOI [10.5194/acp-23-323, DOI 10.5194/ACP-23-323]
  • [3] Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models
    Barsanti, K. C.
    Carlton, A. G.
    Chung, S. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (23) : 12073 - 12088
  • [4] Carter W. P. L., 2010, SAPRC-99 mechanism files and associated programs and examples
  • [5] Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)
    Chan, A. W. H.
    Kautzman, K. E.
    Chhabra, P. S.
    Surratt, J. D.
    Chan, M. N.
    Crounse, J. D.
    Kuerten, A.
    Wennberg, P. O.
    Flagan, R. C.
    Seinfeld, J. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (09) : 3049 - 3060
  • [6] SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation
    Chen, Chia-Li
    Kacarab, Mary
    Tang, Ping
    Cocker, David R., III
    [J]. ATMOSPHERIC ENVIRONMENT, 2016, 131 : 424 - 433
  • [7] Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis
    Chen, Jie
    Hoek, Gerard
    [J]. ENVIRONMENT INTERNATIONAL, 2020, 143
  • [8] Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40)
    Ciarelli, Giancarlo
    El Haddad, Imad
    Bruns, Emily
    Aksoyoglu, Sebnem
    Moehler, Ottmar
    Baltensperger, Urs
    Prevot, Andre S. H.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (06) : 2303 - 2320
  • [9] Modeling secondary organic aerosol in an urban area: application to Paris, France
    Couvidat, F.
    Kim, Y.
    Sartelet, K.
    Seigneur, C.
    Marchand, N.
    Sciare, J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (02) : 983 - 996
  • [10] Relative contributions of selected multigeneration products to chamber SOA formed from photooxidation of a range (C10-C17) of n-alkanes under high NOx conditions
    Docherty, Kenneth S.
    Yaga, Robert
    Preston, William T.
    Jaoui, Mohammed
    Reidel, Theran P.
    Offenberg, John H.
    Kleindienst, Tadeusz E.
    Lewandowski, Michael
    [J]. ATMOSPHERIC ENVIRONMENT, 2021, 244