Dual-Path Feature Fusion Network for Semantic Segmentation of Remote Sensing Images

被引:1
作者
Li, Boyang [1 ]
Zhang, Yu [1 ]
Zhang, Youmei [1 ]
Li, Bin [1 ]
Li, Zhenhao [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
关键词
Feature extraction; Remote sensing; Transformers; Semantic segmentation; Correlation; Convolutional neural networks; Sensors; Attention mechanism; ConvNeXt; global contextual information; local texture feature; remote sensing image; semantic segmentation;
D O I
10.1109/LGRS.2024.3402690
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Both global contextual information and local texture information are of vital importance for the semantic segmentation of remote sensing images due to the high spatial resolution of remote sensing images and large variations in intraclass object size. In this letter, we propose a novel dual-path feature fusion semantic segmentation network for remote sensing images. A pure convolutional module called dual-path feature extraction (DPFE) module is applied to model global contextual and local texture features simultaneously with low complexity. Inspired by ConvNeXt with comparable global contextual modeling capacity with Transformer, the global path of DPFE draws some successful strategies of ConvNeXt to generate powerful global feature. Meanwhile, an attention feature fusion (AFF) module is proposed, which achieves the global and local feature comprehensive fusion by exploring the correlation of channels through attention mechanism. The proposed network is evaluated on Vaihingen and Potsdam benchmarks and the quantitative results show the proposed network can achieve overall accuracy (OA) of 91.3% and 89.7%, respectively, which are better than several representative semantic segmentation approaches.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 2021, IEEE J. Sel Topics Appl Earth Observ. Remote Sens., V14
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images [J].
Bai, Lin ;
Lin, Xiangyuan ;
Ye, Zhen ;
Xue, Dongling ;
Yao, Cheng ;
Hui, Meng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   CCANet: Class-Constraint Coarse-to-Fine Attentional Deep Network for Subdecimeter Aerial Image Semantic Segmentation [J].
Deng, Guohui ;
Wu, Zhaocong ;
Wang, Chengjun ;
Xu, Miaozhong ;
Zhong, Yanfei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[7]   Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation [J].
He, Xin ;
Zhou, Yong ;
Zhao, Jiaqi ;
Zhang, Di ;
Yao, Rui ;
Xue, Yong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   GLSANet: Global-Local Self-Attention Network for Remote Sensing Image Semantic Segmentation [J].
Hu, Xudong ;
Zhang, Penglin ;
Zhang, Qi ;
Yuan, Feng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
[9]   CCNet: Criss-Cross Attention for Semantic Segmentation [J].
Huang, Zilong ;
Wang, Xinggang ;
Huang, Lichao ;
Huang, Chang ;
Wei, Yunchao ;
Liu, Wenyu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :603-612
[10]   Global-Local Attention Network for Semantic Segmentation in Aerial Images [J].
Li, Minglong ;
Shan, Lianlei ;
Li, Xiaobin ;
Bai, Yang ;
Zhou, Dengji ;
Wang, Weiqiang ;
Lv, Ke ;
Luo, Bin ;
Chen, Si-Bao .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :5704-5711