Electron capture dynamics into self-assembled quantum dots far from equilibrium with their environment

被引:1
作者
Berg, L. [1 ]
Schnorr, L. [1 ]
Wilkens, J. [1 ]
Heinzel, T. [1 ]
Rothfuchs-Engels, C. [2 ]
Scholz, S. [2 ]
Ludwig, A. [2 ]
Wieck, A. D. [2 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Solid State Phys Lab, D-40204 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
关键词
LEVEL TRANSIENT SPECTROSCOPY; GAAS;
D O I
10.1103/PhysRevB.109.235433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report studies of the electron capture process in self-assembled quantum dots (SAQDs) far from equilibrium with their environment and at large distance to the reservoirs. Deep level transient spectroscopy is used to determine the capacitance transients in response to bias voltage pulses, from which the capture rates are obtained as a function of the temperature and the quantum dot occupancy. The observed activated character of the capture suggests that the dominant electron source is the back contact. A model is developed based on electrons diffusing from the reservoir across the flat band region and getting captured in the SAQDs after overcoming the barrier formed by the space charge region between its onset and the quantum dots. For small barriers, we identify a distinct tunneling contribution to the capture current.
引用
收藏
页数:6
相关论文
共 31 条
[11]   DIRECT FORMATION OF QUANTUM-SIZED DOTS FROM UNIFORM COHERENT ISLANDS OF INGAAS ON GAAS-SURFACES [J].
LEONARD, D ;
KRISHNAMURTHY, M ;
REAVES, CM ;
DENBAARS, SP ;
PETROFF, PM .
APPLIED PHYSICS LETTERS, 1993, 63 (23) :3203-3205
[12]   Coexistence of deep levels with optically active InAs quantum dots [J].
Lin, SW ;
Balocco, C ;
Missous, M ;
Peaker, AR ;
Song, AM .
PHYSICAL REVIEW B, 2005, 72 (16)
[13]   A quantum dot single-photon turnstile device [J].
Michler, P ;
Kiraz, A ;
Becher, C ;
Schoenfeld, WV ;
Petroff, PM ;
Zhang, LD ;
Hu, E ;
Imamoglu, A .
SCIENCE, 2000, 290 (5500) :2282-2285
[14]   CAPACITANCE TRANSIENT SPECTROSCOPY [J].
MILLER, GL ;
LANG, DV ;
KIMERLING, LC .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1977, 7 :377-448
[15]   New physics and devices based on self-assembled semiconductor quantum dots [J].
Mowbray, DJ ;
Skolnick, MS .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (13) :2059-2076
[16]   800meV localization energy in GaSb/GaAs/Al0.3Ga0.7As quantum dots [J].
Nowozin, T. ;
Bonato, L. ;
Hoegner, A. ;
Wiengarten, A. ;
Bimberg, D. ;
Lin, Wei-Hsun ;
Lin, Shih-Yen ;
Reyner, C. J. ;
Liang, Baolai L. ;
Huffaker, D. L. .
APPLIED PHYSICS LETTERS, 2013, 102 (05)
[17]   Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure [J].
Nowozin, T. ;
Marent, A. ;
Geller, M. ;
Bimberg, D. ;
Akcay, N. ;
Oencan, N. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[18]   Epitaxially self-assembled quantum dots [J].
Petroff, PM ;
Lorke, A ;
Imamoglu, A .
PHYSICS TODAY, 2001, 54 (05) :46-52
[19]   Mode-locked quantum-dot lasers [J].
Rafailov, E. U. ;
Cataluna, M. A. ;
Sibbett, W. .
NATURE PHOTONICS, 2007, 1 (07) :395-401
[20]   An entangled-light-emitting diode [J].
Salter, C. L. ;
Stevenson, R. M. ;
Farrer, I. ;
Nicoll, C. A. ;
Ritchie, D. A. ;
Shields, A. J. .
NATURE, 2010, 465 (7298) :594-597