Isolation and Characterization of Plant-Growth-Promoting, Drought-Tolerant Rhizobacteria for Improved Maize Productivity

被引:7
|
作者
Agunbiade, Victor Funso [1 ]
Fadiji, Ayomide Emmanuel [1 ]
Agbodjato, Nadege Adouke [1 ]
Babalola, Olubukola Oluranti [1 ]
机构
[1] North West Univ, Fac Nat & Agr Sci, Food Secur & Safety Focus Area, ZA-2735 Mmabatho, South Africa
来源
PLANTS-BASEL | 2024年 / 13卷 / 10期
基金
新加坡国家研究基金会;
关键词
plant-microbial interaction; sustainable agriculture; 16S rRNA gene; drought tolerance; biological control; stress condition; ARBUSCULAR MYCORRHIZAL FUNGI; ABIOTIC STRESS; ACC DEAMINASE; RHIZOSPHERE; BACTERIA; YIELD; STRAINS; WHEAT; PGPR;
D O I
10.3390/plants13101298
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is one of the main abiotic factors affecting global agricultural productivity. However, the application of bioinocula containing plant-growth-promoting rhizobacteria (PGPR) has been seen as a potential environmentally friendly technology for increasing plants' resistance to water stress. In this study, rhizobacteria strains were isolated from maize (Zea mays L.) and subjected to drought tolerance tests at varying concentrations using polyethylene glycol (PEG)-8000 and screened for plant-growth-promoting activities. From this study, 11 bacterial isolates were characterized and identified molecularly, which include Bacillus licheniformis A5-1, Aeromonas caviae A1-2, A. veronii C7_8, B. cereus B8-3, P. endophytica A10-11, B. halotolerans A9-10, B. licheniformis B9-5, B. simplex B15-6, Priestia flexa B12-4, Priestia flexa C6-7, and Priestia aryabhattai C1-9. All isolates were positive for indole-3-acetic acid (IAA), siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, ammonia production, nitrogen fixation, and phosphate solubilization, but negative for hydrogen cyanide production. Aeromonas strains A1-2 and C7_8, showing the highest drought tolerance of 0.71 and 0.77, respectively, were selected for bioinoculation, singularly and combined. An increase in the above- and below-ground biomass of the maize plants at 100, 50, and 25% water-holding capacity (WHC) was recorded. Bacterial inoculants, which showed an increase in the aerial biomass of plants subjected to moderate water deficiency by up to 89%, suggested that they can be suitable candidates to enhance drought tolerance and nutrient acquisition and mitigate the impacts of water stress on plants.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Characterization of Plant-Growth-Promoting Rhizobacteria for Tea Plant (Camellia sinensis) Development and Soil Nutrient Enrichment
    Wang, Mengjiao
    Sun, Haiyan
    Dai, Huiping
    Xu, Zhimin
    PLANTS-BASEL, 2024, 13 (18):
  • [32] Isolation and Characterization of Plant Growth-Promoting Rhizobacteria from Coffee Plantation Soils and Its Influence on Maize Growth
    Waday, Yasin Ahmed
    Girma Aklilu, Ermias
    Bultum, Mohammed Seid
    Ramayya Ancha, Venkata
    Beyene, Dejene
    APPLIED AND ENVIRONMENTAL SOIL SCIENCE, 2022, 2022
  • [33] Plant-Growth-Promoting Rhizobacteria Improve Seeds Germination and Growth of Argania spinosa
    Chabbi, Naima
    Chafiki, Salahddine
    Telmoudi, Maryem
    Labbassi, Said
    Bouharroud, Rachid
    Tahiri, Abdelghani
    Mentag, Rachid
    El Amri, Majda
    Bendiab, Khadija
    Hsissou, Driss
    Mimouni, Abdelaziz
    Ait Aabd, Naima
    Qessaoui, Redouan
    PLANTS-BASEL, 2024, 13 (15):
  • [34] Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review
    Paul, Diby
    Lade, Harshad
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2014, 34 (04) : 737 - 752
  • [35] Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review
    Diby Paul
    Harshad Lade
    Agronomy for Sustainable Development, 2014, 34 : 737 - 752
  • [36] Improved Salinity Tolerance of Arachis hypogaea (L.) by the Interaction of Halotolerant Plant-Growth-Promoting Rhizobacteria
    Shukla, Pushp Sheel
    Agarwal, Pradeep K.
    Jha, Bhavanath
    JOURNAL OF PLANT GROWTH REGULATION, 2012, 31 (02) : 195 - 206
  • [37] Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia
    Amondo, Emily
    Simtowe, Franklin
    Bahadur Rahut, Dil
    Erenstein, Olaf
    INTERNATIONAL JOURNAL OF CLIMATE CHANGE STRATEGIES AND MANAGEMENT, 2019, 11 (04) : 570 - 591
  • [38] Effect of nanozeolite and plant growth promoting rhizobacteria on maize
    Priyanka Khati
    Pankaj Parul
    Rajeew Bhatt
    Anita Nisha
    3 Biotech, 2018, 8
  • [39] Effect of nanozeolite and plant growth promoting rhizobacteria on maize
    Khati, Priyanka
    Parul
    Bhatt, Pankaj
    Nisha
    Kumar, Rajeew
    Sharma, Anita
    3 BIOTECH, 2018, 8
  • [40] Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet
    Goulart, Jussara Tamires de Souza Silva
    Quintanilha-Peixoto, Gabriel
    Esteves, Bruno dos Santos
    de Souza, Suzane Ariadina
    Lopes, Pollyanna Santiago
    da Silva, Nathalia Duarte
    Soares, Julia Ribeiro
    Barroso, Laura Mathias
    Suzuki, Marina Satika
    Intorne, Aline Chaves
    MICROORGANISMS, 2024, 12 (09)