Fe-based (stainless steel 316L) coatings are widely employed in the aerospace, chemical processing, petrochemical, and marine industries owing to their low and stable price, excellent corrosion resistance, and durability. However, at elevated temperatures, their performance is limited due to wear. Thus, the current investigation incorporates tungsten carbide (WC-Co) and chromium carbide (Cr3C2) into the Fe-based coating to enhance its wear resistance at high temperatures. SS316L reinforced by 30% of WC-Co and Cr3C2 by mechanical mixture, then sprayed using high-velocity oxy fuel spraying method. Coating characteristics, such as microstructures and phase analysis, were measured using FESEM/EDS and XRD. Coating density, microhardness, and bond strength were examined by water immersion, Vickers indentation, and ASTM C-633 methods, respectively. A ball-on-disk tribometer was employed to conduct wear examination at various temperatures (25, 300, and 600 degrees C) and loads (10 and 30 N) against the alumina counter body. The wear rate and friction coefficient of SS316L-30%WC-Co decrease from 25 to 600 degrees C, while the wear rate of SS316L-30%Cr3C2 increases with temperature up to 300 degrees C and then decreases at 600 degrees C. The oxide phase adheres strongly to underlying surfaces forming a protective layer (Cr2O3, NiWO4, Fe2O3, and NiMO4), changing the mode of wear mechanism. At higher temperatures and loads, the coating exhibited oxidation modified adhesive wear, and coatings provide excellent wear resistance along with reduction in friction. This research provides a novel approach for future standardization and evaluation of coatings on metal alloys for industrial applications.