Superconvergence analysis of spectral volume methods for one-dimensional diffusion and third-order wave equations
被引:0
作者:
Yin, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Sch Math Sci, 92,Wucheng Rd, Taiyuan 030006, Peoples R ChinaShanxi Univ, Sch Math Sci, 92,Wucheng Rd, Taiyuan 030006, Peoples R China
Yin, Xu
[1
]
Cao, Waixiang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, 19,Xinjiekouwai St,Haidian Dist, Beijing 100875, Peoples R ChinaShanxi Univ, Sch Math Sci, 92,Wucheng Rd, Taiyuan 030006, Peoples R China
Cao, Waixiang
[2
]
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USAShanxi Univ, Sch Math Sci, 92,Wucheng Rd, Taiyuan 030006, Peoples R China
Zhang, Zhimin
[3
]
机构:
[1] Shanxi Univ, Sch Math Sci, 92,Wucheng Rd, Taiyuan 030006, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, 19,Xinjiekouwai St,Haidian Dist, Beijing 100875, Peoples R China
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
spectral volume method;
error estimate;
superconvergence;
high order equation;
DISCONTINUOUS GALERKIN METHODS;
FINITE-ELEMENT-METHOD;
CONSERVATION-LAWS;
UNSTRUCTURED GRIDS;
EXTENSION;
D O I:
10.21136/AM.2024.0235-23
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We present a unified approach to studying the superconvergence property of the spectral volume (SV) method for high-order time-dependent partial differential equations using the local discontinuous Galerkin formulation. We choose the diffusion and third-order wave equations as our models to illustrate approach and the main idea. The SV scheme is designed with control volumes constructed using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as GSV and RSV schemes, respectively. With a careful choice of numerical fluxes, we demonstrate that the schemes are stable and exhibit optimal error estimates. Furthermore, we establish superconvergence of the GSV and RSV for the solution itself and the auxiliary variables. To be more precise, we prove that the errors of numerical fluxes at nodes and for the cell averages are superconvergent with orders of O(h2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O}(h<^>{2k+1})$$\end{document} and O(h2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O}(h<^>{2k})$$\end{document} for RSV and GSV, respectively. Superconvergence for the function value and derivative value approximations is also studied and the superconvergence points are identified at Gauss points and Radau points. Numerical experiments are presented to illustrate theoretical findings.
机构:
Chinese Acad Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
Ji, Xia
Tang, Huazhong
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, HEDPS, CAPT, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R ChinaChinese Acad Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R China
Zhang, Wensheng
Jiang, Jiangjun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R China