Anomaly detection in multivariate time series data using deep ensemble models

被引:4
|
作者
Iqbal, Amjad [1 ]
Amin, Rashid [1 ,2 ]
Alsubaei, Faisal S. [3 ]
Alzahrani, Abdulrahman [4 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci, Taxila, Pakistan
[2] Univ Chakwal, Dept Comp Sci & Informat Technol, Chakwal, Pakistan
[3] Univ Jeddah, Coll Comp Sci & Engn, Dept Cybersecur, Jeddah, Saudi Arabia
[4] Univ Jeddah, Coll Comp Sci & Engn, Dept Informat Syst & Technol, Jeddah, Saudi Arabia
来源
PLOS ONE | 2024年 / 19卷 / 06期
关键词
D O I
10.1371/journal.pone.0303890
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Unsupervised Deep Anomaly Detection for Industrial Multivariate Time Series Data
    Liu, Wenqiang
    Yan, Li
    Ma, Ningning
    Wang, Gaozhou
    Ma, Xiaolong
    Liu, Peishun
    Tang, Ruichun
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [2] TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data
    Tuli, Shreshth
    Casale, Giuliano
    Jennings, Nicholas R.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (06): : 1201 - 1214
  • [3] Contextual anomaly detection for multivariate time series data
    Kim, Hyojoong
    Kim, Heeyoung
    QUALITY ENGINEERING, 2023, 35 (04) : 686 - 695
  • [4] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [5] A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data
    Zhang, Chuxu
    Song, Dongjin
    Chen, Yuncong
    Feng, Xinyang
    Lumezanu, Cristian
    Cheng, Wei
    Ni, Jingchao
    Zong, Bo
    Chen, Haifeng
    Chawla, Nitesh V.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1409 - 1416
  • [6] Multivariate time series ensemble model for load prediction on hosts using anomaly detection techniques
    Bawa, Shabnam
    Rana, Prashant Singh
    Tekchandani, Rajkumar
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 10993 - 11016
  • [7] Applications of Anomaly Detection using Deep Learning on Time Series Data
    Van Quan Nguyen
    Linh Van Ma
    Kim, Jin-young
    Kim, Kwangki
    Kim, Jinsul
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 393 - 396
  • [8] Ensemble Neuroevolution-Based Approach for Multivariate Time Series Anomaly Detection
    Faber, Kamil
    Pietron, Marcin
    Zurek, Dominik
    ENTROPY, 2021, 23 (11)
  • [9] Deep probabilistic graphical modeling for robust multivariate time series anomaly detection with missing data
    Yang, Jingyu
    Yue, Zuogong
    Yuan, Ye
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 238
  • [10] A Comparative Evaluation of Deep Learning Anomaly Detection Techniques on Semiconductor Multivariate Time Series Data
    Tchatchoua, Philip
    Graton, Guillaume
    Ouladsine, Mustapha
    Juge, Michel
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 1613 - 1620