Decentralized Anomaly Detection in Cooperative Multi-Agent Reinforcement Learning

被引:0
|
作者
Kazari, Kiarash [1 ]
Shereen, Ezzeldin [1 ]
Dan, Gyorgy [1 ]
机构
[1] KTH Royal Inst Technol, Div Network & Syst Engn, Sch Elect Engn & Comp Sci, Stockholm, Sweden
来源
PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023 | 2023年
基金
瑞典研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of detecting adversarial attacks against cooperative multi-agent reinforcement learning. We propose a decentralized scheme that allows agents to detect the abnormal behavior of one compromised agent. Our approach is based on a recurrent neural network (RNN) trained during cooperative learning to predict the action distribution of other agents based on local observations. The predicted distribution is used for computing a normality score for the agents, which allows the detection of the misbehavior of other agents. To explore the robustness of the proposed detection scheme, we formulate the worst-case attack against our scheme as a constrained reinforcement learning problem. We propose to compute an attack policy via optimizing the corresponding dual function using reinforcement learning. Extensive simulations on various multi-agent benchmarks show the effectiveness of the proposed detection scheme in detecting state of the art attacks and in limiting the impact of undetectable attacks.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [1] Decentralized Anomaly Detection via Deep Multi-Agent Reinforcement Learning
    Szostak, Hadar
    Cohen, Kobi
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [2] Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning
    Zimmer, Matthieu
    Glanois, Claire
    Siddique, Umer
    Weng, Paul
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [3] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470
  • [4] Decentralized Deterministic Multi-Agent Reinforcement Learning
    Grosnit, Antoine
    Cai, Desmond
    Wynter, Laura
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1548 - 1553
  • [5] Decentralized Counterfactual Value with Threat Detection for Multi-Agent Reinforcement Learning in mixed cooperative and competitive environments
    Dong, Shaokang
    Li, Chao
    Yang, Shangdong
    Li, Wenbin
    Gao, Yang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [6] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Hysteretic Q-Learning : an algorithm for decentralized reinforcement learning in cooperative multi-agent teams
    Matignon, Laetitia
    Laurent, Guillaume J.
    Le Fort-Piat, Nadine
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 64 - 69
  • [8] On the Robustness of Cooperative Multi-Agent Reinforcement Learning
    Lin, Jieyu
    Dzeparoska, Kristina
    Zhang, Sai Qian
    Leon-Garcia, Alberto
    Papernot, Nicolas
    2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2020), 2020, : 62 - 68
  • [9] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [10] Decentralized Computation Offloading with Cooperative UAVs: Multi-Agent Deep Reinforcement Learning Perspective
    Hwang, Sangwon
    Lee, Hoon
    Park, Juseong
    Lee, Inkyu
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (04) : 24 - 31