CRITICAL GROWTH FRACTIONAL KIRCHHOFF ELLIPTIC PROBLEMS

被引:1
作者
Goel, Divya [1 ]
Rawat, Sushmita [2 ]
Sreenadh, K. [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; MULTIPLICITY; EXISTENCE;
D O I
10.57262/ade029-1112-863
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the existence and multiplic-ity of positive weak solutions for the following fractional Kirchhoff-Choquard problem: M(& Vert;u & Vert;(2))(-triangle)(s)u=lambda f(x)|u|q-2u+(integral ohm|u(y)|2 & lowast;mu,s|x-y|mu dy)|u|2 & lowast;mu,s-2uin ohm, u >0 in ohm, u= 0 in R-N\ohm, where ohm is open bounded domain of R(N )with C(2 )boundary, N >2 s and s is an element of(0,1), here M models Kirchhoff-type coefficient of the form M(t) =a+bt theta-1, where a,b >0 are given constants. (-triangle)si s fractional Laplace operator, lambda >0 is a real parameter. We explore u sing the variational methods, the existence of solution fo rq is an element of(1,2 & lowast;s)and theta >= 1. Here, 2 & lowast;s=2NN-2sand 2 & lowast;mu,s=2N-mu N-2sis the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality
引用
收藏
页码:863 / 898
页数:36
相关论文
共 35 条
  • [31] On fractional Schrodinger equation in RN with critical growth
    Shang, Xudong
    Zhang, Jihui
    Yang, Yang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [32] Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity
    Wang, Fuliang
    Xiang, Mingqi
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 1 - 16
  • [33] Xiang M., 2016, Nonlinearity, V29
  • [34] Xiang M., 2020, Advances in Nonlinear Analysis, V9
  • [35] Multiplicity of solutions for Kirchhoff type equations involving critical Sobolev exponents in high dimension
    Yao, Xianzhong
    Mu, Chunlai
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3722 - 3734