CRITICAL GROWTH FRACTIONAL KIRCHHOFF ELLIPTIC PROBLEMS

被引:1
作者
Goel, Divya [1 ]
Rawat, Sushmita [2 ]
Sreenadh, K. [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; MULTIPLICITY; EXISTENCE;
D O I
10.57262/ade029-1112-863
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the existence and multiplic-ity of positive weak solutions for the following fractional Kirchhoff-Choquard problem: M(& Vert;u & Vert;(2))(-triangle)(s)u=lambda f(x)|u|q-2u+(integral ohm|u(y)|2 & lowast;mu,s|x-y|mu dy)|u|2 & lowast;mu,s-2uin ohm, u >0 in ohm, u= 0 in R-N\ohm, where ohm is open bounded domain of R(N )with C(2 )boundary, N >2 s and s is an element of(0,1), here M models Kirchhoff-type coefficient of the form M(t) =a+bt theta-1, where a,b >0 are given constants. (-triangle)si s fractional Laplace operator, lambda >0 is a real parameter. We explore u sing the variational methods, the existence of solution fo rq is an element of(1,2 & lowast;s)and theta >= 1. Here, 2 & lowast;s=2NN-2sand 2 & lowast;mu,s=2N-mu N-2sis the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality
引用
收藏
页码:863 / 898
页数:36
相关论文
共 35 条
  • [1] ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH
    Alves, C. O.
    Correa, F. J. S. A.
    Figueiredo, G. M.
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03): : 409 - 417
  • [2] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [3] Concentrating solutions for a class of nonlinear fractional Schrodinger equations in RN
    Ambrosio, Vincenzo
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1367 - 1414
  • [4] MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM
    AZORERO, JG
    ALONSO, IP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) : 877 - 895
  • [5] Badiale M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-227-8
  • [6] A critical fractional equation with concave convex power nonlinearities
    Barrios, B.
    Colorado, E.
    Servadei, R.
    Soria, F.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 875 - 900
  • [7] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [8] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [9] p-fractional Kirchhoff equations involving critical nonlinearities
    Fiscella, Alessio
    Pucci, Patrizia
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 350 - 378
  • [10] A critical Kirchhoff type problem involving a nonlocal operator
    Fiscella, Alessio
    Valdinoci, Enrico
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 156 - 170