Global Well-posedness for the Fourth-order Defocusing Cubic Equation with Initial Data Lying in a Critical Sobolev Space

被引:0
作者
Chen, Miao [1 ]
Wang, Hua [1 ]
Yao, Xiaohua [1 ,2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2024年
基金
中国国家自然科学基金;
关键词
Global well-posedness; fourth-order cubic equation; critical Sobolev space; NONLINEAR SCHRODINGER-EQUATIONS; SCATTERING; STABILITY;
D O I
10.1007/s11464-023-0135-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to study the Cauchy problem of the fourth-order defocusing, cubic equation iut + Delta 2u = - divided by u divided by 2u in critical Sobolev space. We first prove that the problem is local well-posed in the critical Sobolev space H(center dot)sc(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}<^>{s_{c}}(\mathbb{R}<^>{N})$$\end{document}, 3 <= N <= 7. Using the argument of Dodson in [Rev. Mat. Iberoam., 2022, 38(4): 1087-1100], we further prove that the problem is globally well-posed in some critical Sobolev space Hps(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{p}<^>{s}(\mathbb{R}<^>{N})$$\end{document} for N = 6 and N = 7 with radial initial data.
引用
收藏
页码:547 / 580
页数:34
相关论文
共 50 条
  • [31] GLOBAL WELL-POSEDNESS FOR THE CUBIC FRACTIONAL SCHRODINGER EQUATION
    Gao, Xinjun
    COLLOQUIUM MATHEMATICUM, 2018, 153 (01) : 81 - 96
  • [32] Global well-posedness for the defocusing Hartree equation with radial data in R4
    Miao, Changxing
    Xu, Guixiang
    Yang, Jianwei-Urbain
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (02)
  • [33] Global Well-Posedness in Spatially Critical Besov Space for the Boltzmann Equation
    Duan, Renjun
    Liu, Shuangqian
    Xu, Jiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) : 711 - 745
  • [34] WELL-POSEDNESS OF THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE FOURTH-ORDER NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Guo, Boling
    Wu, Jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07): : 3749 - 3778
  • [35] Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
    Duan, Renjun
    Huang, Feimin
    Wang, Yong
    Yang, Tong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 375 - 424
  • [36] Global well-posedness for a fifth-order shallow water equation in Sobolev spaces
    Yang, Xingyu
    Li, Yongsheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (06) : 1458 - 1472
  • [37] Global Well-posedness for the Fifth-order mKdV Equation
    Gao, Xin Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (06) : 1015 - 1027
  • [38] Well-posedness and stability for a class of fourth-order nonlinear parabolic equations
    Li, Xinye
    Melcher, Christof
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 391 : 25 - 56
  • [39] Global well-posedness and scattering for the mass-critical Hartree equation with radial data
    Miao, Chanping
    Xu, Guixiang
    Zhao, Lifeng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (01): : 49 - 79
  • [40] Global well-posedness and scattering for the defocusing (H) over dots-critical NLS
    Xie, Jian
    Fang, Daoyuan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (06) : 801 - 842