Global Well-posedness for the Fourth-order Defocusing Cubic Equation with Initial Data Lying in a Critical Sobolev Space
被引:0
|
作者:
Chen, Miao
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Chen, Miao
[1
]
Wang, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Wang, Hua
[1
]
Yao, Xiaohua
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Yao, Xiaohua
[1
,2
]
机构:
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China
This paper is devoted to study the Cauchy problem of the fourth-order defocusing, cubic equation iut + Delta 2u = - divided by u divided by 2u in critical Sobolev space. We first prove that the problem is local well-posed in the critical Sobolev space H(center dot)sc(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}<^>{s_{c}}(\mathbb{R}<^>{N})$$\end{document}, 3 <= N <= 7. Using the argument of Dodson in [Rev. Mat. Iberoam., 2022, 38(4): 1087-1100], we further prove that the problem is globally well-posed in some critical Sobolev space Hps(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{p}<^>{s}(\mathbb{R}<^>{N})$$\end{document} for N = 6 and N = 7 with radial initial data.
机构:
Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
Univ Washington, Dept Math, Seattle, WA 98195 USAOregon State Univ, Dept Math, Corvallis, OR 97331 USA
Yu, Xueying
Yue, Haitian
论文数: 0引用数: 0
h-index: 0
机构:
ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R ChinaOregon State Univ, Dept Math, Corvallis, OR 97331 USA
Yue, Haitian
Zhao, Zehua
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Dept Math & Stat, Key Lab Algebra Lie Theory & Anal, Ministy Educ, Beijing 100871, Peoples R ChinaOregon State Univ, Dept Math, Corvallis, OR 97331 USA
机构:
Univ Sci & Technol China, Dept Math Sci, Hefei 230026, Anhui, Peoples R China
China Acad Engn Phys, Grad Sch, POB 2101, Beijing 100088, Peoples R ChinaUniv Sci & Technol China, Dept Math Sci, Hefei 230026, Anhui, Peoples R China